Financial Numerical Recipes in C+ + .

Bernt Arne Ødegaard
January 2006

Contents

1 On $\mathrm{C}++$ and programming. 4
1.1 Compiling and linking 4
1.2 The structure of a $\mathrm{C}++$ program4
1.2.1 Types4
1.2.2 Operations4
1.2.3 Functions and libraries 5
1.2.4 Templates and libraries 5
1.2.5 Flow control 6
1.2.6 Input Output 6
1.2.7 Splitting up a program 7
1.2.8 Namespaces 7
1.3 Extending the language, the class concept. 81.3.1 date, an example class1.4 Const references14
1.5 Other $\mathrm{C}++$ concepts 14
2 Matrix Tools 15
2.1 The first screen 15
3 The value of time 16
3.1 Present value 16
3.2 One interest rate with annual compounding 16
3.2.1 Internal rate of return. 18
3.2.2 Bonds 21
3.2.3 Measuri gond sensitivity to interest rate25
3.3 Continously compounded interest 29
3.3.1 Present value 29
3.3.2 Bond pricing and analysis 30
3.4 Further readings 32
4 The term structure of interest rates and an objectlesson
4.1 The interchangeability of discount factors, spotinterest rates and forward interest rates
.2 The term structure as an object4.2.1 Base class
4.2.2 Flat term structure. 3833
4.3 Using the currently observed term structure.4.3.1 Linear Interpolation.40
404.3.2 Interpolated term structure class
4.4 Bond calculations with a general term structureand continous compounding5 Futures algoritms.47
5.1 Pricing of futures contract 47
6 Binomial option pricing 48
6.1 Multiperiod binomial pricing 50
7 Basic Option Pricing, the Black Scholes formula 54
7.1 The formula 54
7.2 Understanding the why's of the formula 57
7.2.1 The original Black Scholes analysis 57
7.2.2 The limit of a binomial case 57
7.2.3 The representative agent framework 58
7.3 Partial derivatives. 587.3.1 Delta7.3.2 Other Derivatives
7.3.3 Implied Volatility 61
8 Warrants 64
8.1 Warrant value in terms of assets 64
8.2 Valuing warrants when observing the stock value 64
8.3 Readings 65
9 Extending the Black Scholes formula 67
9.1 Adjusting for payouts of the underlying. 67
9.1.1 Continous Payouts from underlying. 67
9.1.2 Dividends 68
9.2 American options. 69
9.2.1 Exact american call formula when stock is paying one dividend. 69
9.3 Options on futures 73
9.3.1 Black's model 73
9.4 Foreign Currency Options 75
9.5 Perpetual puts and calls 77
9.6 Readings 78
10 Option pricing with binomial approximations 79
10.1 Introduction 79
10.2 Pricing of options in the Black Scholes setting 80
10.2.1 European Options 80
10.2.2 American Options 80
10.2.3 Estimating partials. 83
10.3 Adjusting for payouts for the underlying 86
10.4 Pricing options on stocks paying dividends using a binomial approximation 87
10.4.1 Checking for early exercise in the binomial model. 87
10.4.2 Proportional dividends 87
10.4.3 Discrete dividends 87
10.5 Option on futures 91
10.6 Foreign Currency options 92
10.7 References 93
11 Finite Differences 94
11.1 Explicit Finite differences 94
11.2 European Options. 94
11.3 American Options. 96
12 Option pricing by simulation 98
12.1 Simulating lognormally distributed random vari- ables 98
12.2 Pricing of European Call options 98
12.3 Hedge parameters 99
12.4 More general payoffs. Function prototypes 102
12.5 Improving the efficiency in simulation 103
12.5.1 Control variates. 103
12.5.2 Antithetic variates. 104
12.5.3 Example 106
12.6 More exotic options 107
13 Approximations 109
13.1 A quadratic approximation to American prices due to Barone-Adesi and Whaley. 109
14 Average, lookback and other exotic options 113
14.1 Bermudan options 113
14.2 Asian options 116
14.3 Lookback options 117
14.4 Monte Carlo Pricing of options whose payoff de- pend on the whole price path 119

 14.4.1 Generating a series of lognormally distributed variables 119
 14.5 Control variate19
15 Alternatives to the Black Scholes type option for-mula124
15.1 Merton's Jump diffusion model 124
16 Using a library for matrix algebra 126
16.1 An example matrix class 126
16.2 Finite Differences 126
16.3 European Options 126
16.4 American Options 128
7 The Mean Variance Frontier 130
17.1 Setup 130
17.2 The minimum variance frontier 131
17.3 Calculation of frontier portfolios 132
17.4 The global minimum variance portfolio 133
17.5 Efficient portfolios 134
17.6 The zero beta portfolio 135
7.7 Allowing for a riskless asset 135
17.8 Efficient sets with risk free assets 136
17.9 The Sharpe Ratio 137
17.10Short-sale constraints 137
18 Pricing of bond options, basic models 138
18.1 Black Scholes bond option pricing 138
18.2 Binomial bond option pricing 140
19 Credit risk 142
19.1 The Merton Model 142
19.2 Issues in implementation 142
20 Term Structure Models 144
20.1 The Nelson Siegel term structure approximation 144
20.2 Bliss 144
20.3 Cubic spline. 147
20.4 Cox Ingersoll Ross. 149
20.5 Vasicek 151
21 Binomial Term Structure models 154
21.1 The Rendleman and Bartter model 154
21.2 Readings 154
22 Term Structure Derivatives 157
22.1 Vasicek bond option pricing 157
A Normal Distribution approximations 159
A. 1 The normal distribution function 159
A. 2 The cumulative normal distribution 159
A. 3 Multivariate normal 159
A. 4 Calculating cumulative bivariate normal proba- bilitie 160
A. 5 Simulating random normal numbers 163
A. 6 Cumulative probabilities for general multivariate distributions 163
A. 7 References 163
B C++ concepts 165
C Summarizing routine names 166
D Installation 174
D. 1 Source availability 174
E Acknowledgements. 178

This book is a a discussion of the calculation of specific formulas in finance. The field of finance has seen a rapid development in recent years, with increasing mathematical sophistication. While the formalization of the field can be traced back to the work of Markowitz (1952) on investors mean-variance decisions and Modigliani and Miller (1958) on the capital structure problem, it was the solution for the price of a call option by Black and Scholes (1973); Merton (1973) which really was the starting point for the mathematicalization of finance. The fields of derivatives and fixed income have since then been the main fields where complicated formulas are used. This book is intended to be of use for people who want to both understand and use these formulas, which explains why most of the algorithms presented later are derivatives prices.
This project started when I was teaching a course in derivatives at the University of British Columbia, in the course of which I sat down and wrote code for calculating the formulas I was teaching. I have always found that implementation helps understanding these things. For teaching such complicated material it is often useful to actually look at the implementation of how the calculation is done in practice. The purpose of the book is therefore primarily pedagogical, although I believe all the routines presented are correct and reasonably efficient, and I know they are also used by people to price real options.
To implement the algorithms in a computer language I choose C++. My students keep asking why anybody would want to use such a backwoods computer language, they think a spreadsheet can solve all the worlds problems. I have some experience with alternative systems for computing, and no matter what, in the end you end up being frustrated with higher end "languages", such as Matlab og Gauss (Not to mention the straitjacket which is is a spreadsheet.) and going back to implementation in a standard language. In my experience with empirical finance I have come to realize that nothing beats knowledge a real computer language. This used to be FORTRAN, then C, and now it is $\mathbf{C + +}$. All example algorithms are therefore coded in C++. I do acknowledge that matrix tools like Matlabare very good for rapid prototyping and compact calculations, and will in addition to $\mathrm{C}++$ in places also illustrate the use of Matlab.
The manuscript has been sitting on the internet for a number of years, during which it has been visited by a large number of people, to judge by the number of mails I have received about the routines. The present (2005) version mainly expands on the background discussion of the routines, this is much more extensive. I have also added a good deal of introductory material on how to program in $\mathrm{C}++$, since a number of questions make it obvious this manuscript is used by a number of people who know finance but not C++. All the routines have been made to confirm to the new ISO/ANSI C++ standard, using such concepts as namespaces and the standard template library.
The current manscript therefore has various intented audiences. Primarily it is for students of finance who desires to see a complete discussion and implementation of some formula. But the manuscript is also useful for students of finance who wants to learn C++, and for computer scientists who want to understand about the finance algorithms they are asked to implent and embed into their programs.
In doing the implementation I have tried to be as generic as possible in terms of the C++ used, but I have taken advantage of a some of the possibilities the language provides in terms of abstraction and modularization. This will also serve as a lesson in why a real computer language is useful. For example I have encapsulated the term structure of interest rate as an example of the use of classes.
This is not a textbook in the underlying theory, for that there are many good alternatives. For much of the material the best textbooks to refer to are Hull (2006) and McDonald (2006), which I have used as references. The notation of the present manuscipt is also similar to these books.

Chapter 1

On $\mathrm{C}++$ and programming.

In this chapter I introduce $\mathrm{C}++$ and discuss how to run programs written in $\mathrm{C}++$. This is by no means a complete reference to programming in C++, it is designed to give enough information to understand the rest of the book. This chapter also only discusses a subset of $\mathrm{C}++$, it concentrates on the parts of the language used in the remainder of this book. For really learning C++ a textbook is necessary. I have found Lippman and Lajoie (1998) an excellent introduction to the language. The authorative source on the language is Stroustrup (1997).

1.1 Compiling and linking

To program in C++ one has to first write a separate file with the program, which is then compiled into low-level instructions (machine language) and linked with libraries to make a complete executable program. The mechanics of doing the compiling and linking varies from system to system, and we leave these details as an exercise to the reader.

1.2 The structure of a $\mathrm{C}++$ program

The first thing to realize about C++ is that it is a strongly typed language. Everything must be declared before it is used, both variables and functions. C++ has a few basic building blocks, which can be grouped into types, operations and functions.

1.2.1 Types

The types we will work with in this book are bool, int, long, double and string.
Here are some example definitions

```
bool this_is_true=true;
int i = 0;
long j = 123456789;
double pi = 3.141592653589793238462643;
string s("this is a string");
```

The most important part of C++ comes from the fact that these basic types can be expanded by use of classes, of which more later.

1.2.2 Operations

To these basic types the common mathematical operations can be applied, such as addition, subtraction, multiplication and division:

```
int i = 100 + 50;
int j = 100 - 50;
int n = 100 * 2;
int m = 100 / 2;
```

These operations are defined for all the common datatypes, with exception of the string type. Such operations can be defined by the programmer for other datatypes as well.

Increment and decrement In addition to these basic operations there are some additional operations with their own shorthand. An example we will be using often is incrementing and decrementing a variable. When we want to increase the value of one item by one, in most languages this is written:

```
int i=0;
i = i+1;
i = i-1;
```

In C++ this operation has its own shorthand

```
int i=0;
i++;
i--;
```

While this does not seem intuitive, and it is excusable to think that this operation is not really necessary, it does come in handy for more abstract data constructs. For example, as we will see later, if one defines a date class with the necessary operations, to get the next date will simply be a matter of

```
date d(1,1,1995);
d++;
```

These two statements will result in the date in d being 2 jan 95 .

1.2.3 Functions and libraries

In addition to the basic mathematical operations there is a large number of additional operations that can be performed on any type. However, these are not parts of the core language, they are implemented as standalone functions (most of which are actually written in C or C++). These functions are included in the large library that comes with any C++ installation. Since they are not part of the core language they must be defined to the compiler before they can be used. Such definitions are performed by means of the include statement.
For example, the mathematical operations of taking powers and performing exponentiation are defined in the mathematical library cmath. In the C++ program one will write

```
#include <cmath>
```

cmath is actually a file with a large number of function defintions, among which one finds pow (x, n) which calculates x^{n}, and $\exp (r)$ which calculates e^{r}. The following programming stub calculates $a=2^{2}$ and $b=e^{1}$.

```
#include <cmath>
double a = pow(2,2);
double b = exp(1);
```

which will give the variables a and b values of 4 and $2.718281828 \ldots$, respectively.

1.2.4 Templates and libraries

The use of libraries is not only limited to functions. Also included in the standard library is generic data structures, which can be used on any data type. The example we will be considering the most is the vector<>, which defines an array, or vector of variables.

```
#include <vector>
vector<double> M(2);
M[0]=1.0;
M[1]=2.0;
M.push_back(3);
```

This example defines an array with three elements of type double

$$
M=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Note some pecularities here. When first defining the vector with the statement

```
vector<double> M(2);
```

we defined an array of 2 elements of type double, which we then proceeded to fill with the values 1 and 2. When filling the array we addressed each element directly. Note that in the statement
$M[0]=1.0 ;$
lies one of the prime traps for programmers coming to C or $\mathrm{C}++$ from another language. Indexing of arrays starts at zero, not at one. M[0] really means the first element of the array.
The last statement,
M.push_back(3);
shows the ability of the programmer of changing the size of the array after it has been defined. push_back is a standard operation on arrays which "pushes" the element onto the back of the array, extending the size of the array by one element. Most programming languages do not allow the programmer to specify variable-sized arrays "on the fly." In FORTRAN or Pascal we would usually have to set a maximum length for each array, and hope that we would not need to exceed that length. The vector $<\gg$ template of C ++ gets rid of the programmers need for "bookkeeping" in such array manipulations.

1.2.5 Flow control

To repeat statements several times one will use on of the possibilities for flow control, such as the for or while constucts. For example, to repeat an operation n times one can use the following for loop:

```
for (int i=0; i<n; i++) {
    some_operation(i);
};
```

The for statement has tree parts. The first part gives the initial condition ($i=0$). The next part the terminal condition ($\mathrm{i}<\mathrm{n}$), which says to stop when $\mathrm{i}<\mathrm{n}$ is not fulfilled, which is at the n'th iteration. The last part is the increment statement (i++), saying what to do in each iteration. In this case the value of i is increased by one in each iteration. This is the typical for statement. One of the causes of C's reputation for terseness is the possibility of elaborate for constructs, which end up being almost impossible to read. In the algorithms presented in this book we will try to avoid any obfuscated for statements, and stick to the basic cases.

1.2.6 Input Output

For any program to do anything useful it needs to be able to output its results. Input and output operations is defined in a couple of libraries, iostream and fstream. The first covers in/output to standard terminals and the second in/output to files.
To write to standard output cout (the terminal), one will do as follows:

```
#include <iostream>
cout << "This is a test" << endl;
```

To write to a file "test. out", one will do as follows:

```
#include <fstream>
ofstream outf;
outf.open("test.out");
outf << "This is a test" << endl;
outf.clear();
outf.close();
```


1.2.7 Splitting up a program

Any nontrivial program in C++ is split into several pieces. Usually each piece is written as a function which returns a value of a given type. To illustrate we provide a complete example program, shown in Code 1.1.
The program defines a function performing the mathematical power operation, power (x, n) which calculates x^{n} through the identity $x^{n}=e^{n \ln (x)}$. This function is then used to calculate and print the first 5 powers of 2 .

```
\#include <iostream> // input output operations
\#include <cmath> // mathematics library
using namespace std; // the above is part of the standard namespace
double power(double x , double n ) \(\{\)
    // define a simple power function
    double \(\mathrm{p}=\exp \left(\mathrm{n}^{*} \log (\mathrm{x})\right)\);
    return \(p\);
\};
int main()\{
    for (int \(\mathrm{n}=1 ; \mathrm{n}<6 ; \mathrm{n}++\) ) \(\{\)
        cout \(\ll\) " \(2^{\wedge} " \ll\) n \(\ll "=" \ll \operatorname{power}(2, n) \ll\) endl;
    \};
\};
```

C++ Code 1.1: A complete program
When compiled, linked and run, the program will provide the following output

```
2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
```


1.2.8 Namespaces

To help in building large programs, the concept of a namespace was introduced. Namespaces are a means of keeping the variables and functions defined local to the context in which they are used. For now it is necessary to know that any function in the standard C++ library lies in its own namespace, called the standard namespace. To actually access these library functons it is necessary to explicitly specify that one wants to access the standard namespace, by the statement
using namespace std;
Instead of such a general approach, one can also specify the namespace on an element by element basis, but this is more a topic for specialized $\mathrm{C}++$ texts, for the current purposes we will allow all routines access to the whole standard namespace.

1.3 Extending the language, the class concept.

One of the major advances of $\mathrm{C}++$ relative to other programming languages is the programmers ability to extend the language by creating new data types and defining standard operations on these data types. This ability is why C++ is called an object oriented programming language, since much of the work in programming is done by creating objects. An object is best though of as a data structure with operations on it defined. How one uses an object is best shown by an example.

1.3.1 date, an example class

Consider the abstract concept of a date. A date can be specified in any number of ways. Let us limit ourselves to the Gregorian calendar. 12 august 2003 is a common way of specifying a date. However, it can also be represented by the strings: " $2003 / 8 / 12$ ", " $12 / 8 / 2003$ " and so on, or by the number of years since 1 january 1900 , the number of months since January, and the day of the month (which is how a UNIX programmer will think of it).
However, for most people writing programs the representation of a date is not relevant, they want to be able to enter dates in some abstract way, and then are conserned with such questions as:

- Are two dates equal?
- Is one date earlier than another?
- How many days is it between two dates?

A C++ programmer will proceed to use a class that embodies these uses of the concept of a date. Typically one will look around for an extant class which has already implemented this, but we will show a trivial such date class as an example of how one can create a class.
A class is defined in a header file, as shown in code 1.2. A number of things is worth noting here. As internal representation of the date is chosen the three integers day d $_{-}$, month ${ }_{-}$and year. This is the data structure which is then manipulated by the various functions defined below.
The functions are used to

- Create a date variable: date (const int\& d, const int\& m, const int\& y);
- Functions outputting the date by the three integer functions day (), month() and year().
- Functions setting the date set_day (int), set_month(int) and set_year(int), which are used by providing an integer as arguments to the function.
- Increment and decrement functions ++ and -
- Comparison functions $<,<=,>,\rangle=,==$ and !-.

After including this header file, programmers using such a class will then treat an object of type date just like any other.
For exmple,

```
date d(1,1,2001);
++d;
```

would result in the date object d containing the date 2 january 2001.
Any C++ programmer who want to use this date object will only need to look at the header file to know what are the possible functions one can use with a date object, and be happy about not needing to know anything about how these functions are implemented. This is the encapsulation part of object oriented programming, all relevant information about the date object is specified by the header file. This is the only point of interaction, all details about implementation of the class objects and its functions is not used in code using this object.

```
class date {
protected:
    int year_;
    int month_;
    int day_;
public:
    date();
    date(const int& d, const int& m, const int& y);
    bool valid() const;
    int day() const;
    int month() const;
    int year() const;
    void set_day (const int& day );
    void set_month (const int& month );
    void set_year (const int& year );
    date operator ++(); // prefix
    date operator ++(int); // postfix
    date operator --(); // prefix
    date operator --(int); // postfix
};
bool operator == (const date&, const date&); // comparison operators
bool operator != (const date&, const date&);
bool operator < (const date&, const date&);
bool operator > (const date&, const date&);
bool operator <= (const date&, const date&);
bool operator >= (const date&, const date&);
```

C++ Code 1.2: Defining a date class

Let us look at the implementation of this.
Code 1.3 defines the basic operations, initialization, setting the date, and checking whether a date is valid.

```
#include "date.h"
date::date(){ year- = 0; month_ = 0; day }=0;\mp@code{};
date::date(const int& day, const int& month, const int& year){
    day_ = day;
    month_ = month;
    year_ = year;
};
int date::day() const { return day_; };
int date::month() const { return month_; };
int date::year() const { return year_; };
void date::set_day (const int& day) { date::day_ = day; };
void date::set_month(const int& month) { date::month_ = month; };
void date::set_year (const int& year) { date::year_ = year; };
bool date::valid() const {
// This function will check the given date is valid or not.
// If the date is not valid then it will return the value false.
// Need some more checks on the year, though
    if (year_<0)
        return false
    if (month_>12| month_<1) return false;
    if (day_>31 || day_<1) return false;
    if ((day_==31 && (month_==2 | month_==4 | month_==6 | month_==9 | month_==11)))
        return false;
    if ( day_==30 && month_==2) return false;
    // should also check for leap years, but for now allow for feb 29 in any year
    return true;
};
```

C++ Code 1.3: Basic operations for the date class

For many abstract types it can be possible to define an ordering. For dates there is the natural ordering. Code 1.4 shows how such comparison operations is defined.

```
#include "date.h"
bool operator }==(\mathrm{ const date& d1, const date& d2){ // check for equality
    if (! (d1.valid() && (d2.valid())) ) { return false; }; /* if dates not valid, not clear what to do.
                                    alternative: throw exception */
        return ((d1.day()==d2.day()) && (d1.month()==d2.month()) && (d1.year()==d2.year()));
};
bool operator < (const date& d1, const date& d2){
        if (!(d1.valid() && (d2.valid())) ) { return false; }; // see above remark
        if (d1.year()==d2.year()) { // same year
            if (d1.month()==d2.month()) { // same month
                return (d1.day()<d2.day());
            }
            else {
                return (d1.month()<d2.month());
            };
    }
    else { // different year
            return (d1.year()<d2.year());
    };
};
// remaining operators defined in terms of the above
bool operator <=(const date& d1, const date& d2){
    if (d1==d2) { return true; }
    return (d1<d2);
}
bool operator >=(const date& d1, const date& d2) {
    if (d1==d2) { return true;};
    return (d1>d2);
};
bool operator > (const date& d1, const date& d2) { return !(d1<= d2);};
bool operator !=(const date& d1, const date& d2){ return !(d1== d2);}
```

C++ Code 1.4: Comparison operators for the date class

Code 1.5 shows operations for finding previous and next date, called an iteration operator.

```
#include "date.h"
date next_date(const date& d){
    if (!d.valid()) { return date(); }; //
    date ndat=date((d.day()+1),d.month(),d.year()); // first try adding a day
    if (ndat.valid()) return ndat;
    ndat=date(1,(d.month()+1),d.year()); // then try adding a month
    if (ndat.valid()) return ndat;
    ndat = date(1,1,(d.year()+1)); // must be next year
    return ndat;
}
date previous_date(const date& d){
    if (!d.valid()) { return date(); }; // return the default date
    date pdat = date((d.day()-1),d.month(),d.year()); if (pdat.valid()) return pdat; // try same month
    pdat = date(31,(d.month()-1),d.year()); if (pdat.valid()) return pdat; // try previous month
    pdat = date(30,(d.month()-1),d.year()); if (pdat.valid()) return pdat;
    pdat = date(29,(d.month() -1),d.year()); if (pdat.valid()) return pdat;
    pdat = date(28,(d.month()-1),d.year()); if (pdat.valid()) return pdat;
    pdat = date(31,12,(d.year()-1)); // try previous year
    return pdat;
};
date date::operator ++(int){ // postfix operator
    date d = *this;
    *this = next_date(d)
    return d
}
date date::operator ++(){ // prefix operator
    *this = next_date(*this);
    return *this;
}
date date::operator --(int){ // postfix operator, return current value
    date d = *this;
    *this = previous_date(*this);
    return d;
}
date date::operator --(){ // prefix operator, return new value
    *this = previous_date(*this);
    return *this;
};
```

C++ Code 1.5: Iterative operators for the date class

Exercise 1.

The function valid() in the date class accepts february 29 'th in every year, but this should ideally only happen for leap years. Modify the function to return a false if the year is not a leap year.

Exercise 2.

A typical operating system has functions for dealing with dates, which your typical C++ implementation can call. Find the relevant functions in your implementation, and

1. Implement a function querying the operating system for the current date, and return this date.
2. Implement a function querying the operating system for the weekday of a given date, and return a representation of the weekday as a member of the set:

$$
\text { \{"mon", "tue", "wed", "thu", "fri", "sat", "sun"\} }
$$

3. Reimplement the valid() function using a system call.

Exercise 3.

Once the date class is available, a number of obvious functions begs to be implemented. How would you

1. Add a given number of days to a date?
2. Go to the end or beginning of a month?
3. Find the distance betwen two dates (in days or in years)?
4. Extract a date from a string? (Here one need to make some assumptions about the format)

1.4 Const references

Let us now discuss a concept of more technical nature. Consider two alternative calls to a function, defined by function calls:

```
some_function(double r);
some_function(const double& r);
```

They both are called by an argument which is a double, and that argument is guaranteed to not be changed in the calling function, but they work differently. In the first case a copy of the variable referenced to in the argument is created for use in the function, but in the second case one uses the same variable, the argument is a reference to the location of the variable. The latter is more efficient, in particular when the argument is a large class. However, one worries that the variable referred to is changed in the function, which in most cases one do not want. Therefore the const qualifier, it says that the function can not modify its argument. The compiler will warn the programmer if an attempt is made to modify such a variable.
For efficiency, in most of the following routines arguments are therefore given as as constant references.

1.5 Other C++ concepts

A number of other C++ concepts, such as function prototypes and templates, will be introduced later in particular contexts. They only appear in a few places and is better introduced where they are used.

Chapter 2

Matrix Tools

Being computer literate entails being aware of a number of computer tools and being able to choose the most suitable tool for the problem at hand. Way to many people turns this around, and want to fit any problem to the computer tool they know. The tool that very often is the tool for business school students is a spreadsheet like Excel. However, this is not the best tool for more computationally intensive tasks.
While the bulk of the present book concerns itself with C++, in many applications in finance a very handy tool is a language for manipulating vectors and matrices using linear algebra. There are a lot of different possible programs that behaves very similarly, with a syntax taken from the mathematical formulation of linear algebra. An early tool of this sort was matlab, with a large number of programs copying much of the syntax of this program. As a result of this there is a proliferation of programs with similar syntax to matlab doing similar analysis. General tools include the commercial version of matlab sold by Mathworks, the public domain programs octave and scilab. Tools that are similar, but more geared towards econometrics, include S with its public domain "clone" R, Gauss and Ox. As for what program to install, there is no right answer. For the basic learning of how these tools work, any of the mentioned packages will do the job. For students on a limited budget the public domain tools octave and scilab are obvious candidates. Both of them perform the basic operations done by the commercial matlab package, and good for learning the basics of such a matrix tool.
In the rest of this chapter I will give an introduction to a tool like this.

2.1 The first screen

These tools are interactive, they present you with a prompt, and expect you to start writing commands. I will denote
>
as the prompt, which means that the program is ready to receive commands. In the text output of the matrix tool will be shown typewritten as:

```
> A = [1, 2, 3; 4, 5, 6]
```

This particular command defines a matrix A, the matrix tool will respond to this command by printing the matrix that was just defined:

$$
\mathrm{A}=
$$

123
456

Chapter 3

The value of time

Finance as a field of study is sometimes somewhat flippantly said to deal with the value of two things: time and risk. While this is not the whole story, there is a deal of truth in it. These are the two issues which is always present. We start our discussion by ignoring risk and only considering the implications of the fact that anybody prefers to get something earlier rather than later, or the value of time.

3.1 Present value

The present value is the current value of a stream of future payments. Let C_{t} be the cash flow at time t. Suppose we have N future cash flows that occur at times $t_{1}, t_{2}, \cdots, t_{N}$.

To find the present value of these future cash flows one need a set of prices of future cash flows. Suppose d_{t} is the price one would pay today for the right to receive one dollar at a future date t. Such a price is also called a discount factor. To complicate matters further such prices will differ depending on the riskiness of the future cash flows. For now we concentrate on one particular set of prices, the prices of riskless future cash flows. We will return to how one would adjust the prices for risky cash flows.
If one knows the set of prices for future claims of one dollar, d_{1}, d_{2}, \ldots, , one would calculate the present value as the sum of the present values of the different elements.

However, knowing this set of current prices for cash flows at all future dates is not always feasible, and some way has to be found to simplify the data need inherent in such general present value calculations.

3.2 One interest rate with annual compounding

The best known way to simplify the present value calculation is to rewrite the discount factors in terms of interest rates, or yields, through the relationship:

$$
d_{t}=\frac{1}{\left(1+r_{t}\right)^{t}}
$$

where r_{t} is the interest rate (usually termed the spot rate) relevant for a t-period investment. To further simplify this calculation one can impose that this interest rate r is constant for all periods. ${ }^{1}$ The prices for valuing the future payments d_{t} is calculated from this interest rate:

$$
d_{t}=\frac{1}{(1+r)^{t}},
$$

In this case one would calculate the present value of a stream of cash flows paid at discrete dates $t=1,2, \ldots N$ as

$$
P V=\sum_{t=1}^{N} \frac{C_{t}}{(1+r)^{t}}
$$

The implementation of this calculation is shown in code 3.1.

```
#include <cmath>
#include <vector>
using namespace std;
#include <iostream>
double cash_flow_pv_discrete(const vector<double>& cflow_times,
                    const vector<double>& cflow_amounts,
                    const double& r){
    double PV=0.0;
    for (int t=0; t<cflow_times.size();t++) {
        PV += cflow_amounts[t]/pow(1.0+r,cflow_times[t]);
    };
    return PV;
};
```

C++ Code 3.1: Present value with discrete compounding
Given the assumption of a discrete, annual interest rate, there are a number of useful special cases of cash flows where one can calculate the present value in a simplified manner. Some of these are shown in the following exercises.

Exercise 4.

Perpetuity [5]
A perpetuity is a promise of a payment of a fixed amount X each period for the indefinite future. Suppose there is a fixed interest rate r.

1. Show that the present value of this sequence of cash flows is calculated simply as

$$
P V=\sum_{t=1}^{\infty} \frac{X}{1+r}=\frac{X}{r}
$$

Exercise 5.

Growing perpetuity [6]

A growing perpetuity is again an infinite sequence of cashflows, where the payment the first year is X and each consequent payment grows by a constant rate g, i.e, the time 2 payment is $X(1+g)$, the time 3 payment is $X(1+g)^{2}$, and so on.

1. Show that the present value of this perpetuity simplifies to

$$
P V=\sum_{t=1}^{\infty} \frac{X(1+g)^{t-1}}{(1+r)^{t}}=\frac{X_{1}}{r-g}
$$

[^0]
Exercise 6.

Annuity [5]
An annuity is a sequence of cashflows for a given number of years, say T periods into the future. Consider an annuity paying a fixed amount X each period. The interest rate is r.

1. Show that the present value of this sequence of cash flows can be simplified as

$$
P V=\sum_{t=1}^{T} \frac{X}{(1+r)^{t}}=X\left[\frac{1}{r}-\frac{1}{r} \frac{1}{(1+r)^{T}}\right]
$$

Exercise 7.

Growing Annuity [6]

An growing annuity is a sequence of cashflows for a given number of years, say T periods into the future, where each payment grows by a given factor each year. We Consider a T-period annuity that pays X the first period. After that, the payments grows at a rate of g per year, i.e. the second year the cash flow is $X(1+g)$, the third $X(1+g)^{2}$, and so on.

1. Show that the present value of this growing annuity can be simplified as

$$
P V=\sum_{t=1}^{T} \frac{X(1+g)^{(t-1)}}{(1+r)^{t}}=X\left[\frac{1}{r-g}-\left(\frac{1+g}{1+r}\right)^{T} \frac{1}{r-g}\right]
$$

Exercise 8.

Rank the following cash flows in terms of present value. Use an interest rate of 5\%.

1. A perpetuity with an annual payment of $\$ 100$.
2. A growing perpetuity, where the first payment is $\$ 75$, and each subsequent payment grows by 2%.
3. A 10 -year annuity with an annual payment of $\$ 90$.
4. A 10 year growing annuity, where the first paymet is $\$ 85$, and each subsequent payment grows by 5%.

3.2.1 Internal rate of return.

In addition to its role in simplifying present value calculations, the interest rate has some further use. The percentage return on an investment is a summary measure of the investment's profitability. Saying that an investment earns 10% per year is a good way of summarizing the cash flows in a way that does not depend on the amount of the initial investment. The return is thus a relative measure of profitability. To estimate a return for a set of cash flows we calculate the internal rate of return. The internal rate of return for a set of cash flows is the interest rate that makes the present value of the cash flows equal to zero.
Suppose the cash flows are $C_{0}, C_{1}, C_{2}, \ldots C_{T}$. Finding an internal rate of return is thus to find a solution y of the equation

$$
\sum_{t=1}^{T} \frac{C_{t}}{(1+y)^{t}}-C_{0}=0
$$

Note that this is a polynomial equation, and as T becomes large, there in no way to find an explicit solution to the equation. It therefore needs to be solved numerically. For relatively well behaved cash flows, where we know that there is one IRR, the method implemented in code 3.2 is suitable, it is an iterative process called bisection. It is an adaption of the bracketing approach discussed in (Press, Teukolsky, Vetterling, and Flannery, 1992, Chapter9),

```
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
#include "fin_recipes.h"
const double ERROR=-1e30;
double cash_flow_irr_discrete(const vector<double>& cflow_times,
                                    const vector<double>& cflow_amounts) {
    // simple minded irr function. Will find one root (if it exists.)
    // adapted from routine in Numerical Recipes in C.
    if (cflow_times.size()!=cflow_amounts.size()) return ERROR;
    const double ACCURACY = 1.0e-5;
    const int MAX_ITERATIONS = 50;
    double x1=0.0;
    double x2 = 0.2
    // create an initial bracket, with a root somewhere between bot,top
    double f1 = cash_flow_pv_discrete(cflow_times, cflow_amounts, x1);
    double f2 = cash_flow_pv_discrete(cflow_times, cflow_amounts, x2);
    int i;
    for (i=0;i<MAX_ITERATIONS;i++) {
        if ((f1*f2) < 0.0) { break; }; //
        if (fabs(f1)<fabs(f2)) {
            f1 = cash_flow_pv_discrete(cflow_times,cflow_amounts, x1+=1.6*(x1-x2));
        }
        else {
            f2 = cash_flow_pv_discrete(cflow_times,cflow_amounts, x2+=1.6*(x2-x1));
        };
    };
    if (f2*f1>0.0) { return ERROR; }
    double f = cash_flow_pv_discrete(cflow_times,cflow_amounts, x1);
    double rtb
    double dx=0
    if (f<0.0) {
        rtb = x1;
        dx=x2-x1
    }
    else {
        rtb = x2;
        dx = x1-x2
    };
    for (i=0;i<MAX_ITERATIONS;i++){
        dx * = 0.5;
        double x_mid = rtb+dx;
        double f_mid = cash_flow_pv_discrete(cflow_times,cflow_amounts, x_mid);
        if (f_mid<=0.0) { rtb = x_mid; }
        if ( (fabs(f_mid)<ACCURACY) | (fabs(dx)<ACCURACY) ) return x_mid;
    };
    return ERROR; // error.
};
```

C++ Code 3.2: Estimation of the internal rate of return

When there is a uniquely defined internal rate of return we get a relative measure of the profitability of a set of cash flows, measured as a return, typically expressed as a percentage. Note some of the implicit assumptions made here. We assume that the same interest rate applies at all future dates (i.e. a flat term structure). The IRR method also assumes intermediate cash flows are reinvested at the internal rate of return.

Suppose we are considering an investment with the following cash flows at dates 0,1 and 2 :

$$
C_{0}=-100, \quad C_{1}=10, \quad C_{2}=110
$$

1. Suppose the current interest rate is 5%. Determine the present value of the cash flows.
2. Find the internal rate of return of this sequence of cash flows.
```
C++ program:
void test_present_value(){
    vector<double> cflows; cflows.push_back(-100.0); cflows.push_back(10.0); cflows.push_back(110.0);
    vector<double> times; times.push_back(0.0); times.push_back(1); times.push_back(2);
    double r=0.05;
    cout << " present value, 5\% discretely compounded interest = " ;
    cout << cash_flow_pv_discrete(times, cflows, r) << endl;
    cout << " internal rate of return = ";
    cout << cash_flow_irr_discrete(times, cflows) << endl;
};
Output from C++ program:
    present value, 5% discretely compounded interest = 9.29705
    internal rate of return = 0.1
```

Example 3.1: Present value calculation

In addition to the above economic qualifications to interpretations of the internal rate of return, we also have to deal with technical problem stemming from the fact that any polynomial equation has potentially several solutions, some of which may be imaginary. ${ }^{2}$ To see whether we are likely to have problems in identifying a single meaningful IRR, the code shown in code 3.3 implements a simple check. It is only a necessary condition for a unique IRR, not sufficient, so you may still have a well-defined IRR even if this returns false. The first test is just to count the number of sign changes in the cash flow. From Descartes rule we know that the number of real roots is one if there is only one sign change. If there is more than one change in the sign of cash flows, we can go further and check the aggregated cash flows for sign changes (See Norstrom (1972)).

```
#include <cmath>
#include <vector>
using namespace std;
inline int sgn(const double& r){ if (r>=0) {return 1;} else {return -1;};}
bool cash_flow_unique_irr(const vector<double>& cflow_times,
                    const vector<double>& cflow_amounts) {
    int sign_changes=0; // first check Descartes rule
    for (int t=1;t<cflow_times.size();++t){
        if (sgn(cflow_amounts[t-1]) !=sgn(cflow_amounts[t])) sign_changes++;
    };
    if (sign_changes==0) return false; // can not find any irr
    if (sign_changes==1) return true;
    double A = cflow_amounts[0]; // check the aggregate cash flows, due to Norstrom
    sign_changes=0;
    for (int t=1;t<cflow_times.size();++t){
        if (sgn(A) != sgn(A+=cflow_amounts[t])) sign_changes++;
    };
    if (sign_changes<=1) return true;
    return false;
}
```

C++ Code 3.3: Test for uniqueness of IRR
A better way to gain an understanding for the relationship between the interest rate and the present value is simply to plot the present value as a function of the interest rate. The following picture illustrates the method for two different cash flows. Note that the set of cash flows on the left has two possble interest rates that sets the present value equal to zero.

$$
C_{0}=-100, C_{1}=10, C_{2}=100 \quad C_{0}=-100, C_{1}=201, C_{2}=-100
$$

3.2.2 Bonds

A prime application of present value calculations is the pricing of bonds and other fixed income securities. What distinguishes bonds is that the future payments are set when the security is issued. The simplest,

[^1]and most typical bond, is a fixed interest, constant maturity bond with no default risk. There is however a large number of alternative contractual features of bonds. The bond could for example ba an annuity bond, paying a fixed amount each period. For such a bond the principal amount outstanding is paid gradually during the life of the bond. The interest rate the bond pays need not be fixed, it could be a floating rate, the interest rate paid could be a function of some market rate. Many bonds are issued by corporations, and in such cases there is a risk that the company issued the bond defaults, and the bond does not pay the complete promised amount. Another thing that makes bond pricing difficult in practice, is that interest rates tend to change over time.

Bond Price

We start by considering a fixed interest bond with no default risk. Such bonds are typically bonds issued by governments. The bond is a promise to pay a face value F at the maturity date T periods from now. Each period the bond pays a fixed percentage amount of the face value as coupon C. The cash flows from the bond thus look as follows.

$t=$	0	1	2	3	\cdots	T
Coupon		C	C	C	\cdots	C
Face value						F

The current bond price $\left(B_{0}\right)$ is the present value of these cash flows:

$$
B_{0}=\sum_{t=1}^{T} \frac{C_{t}}{(1+r)^{t}}
$$

where $C_{t}=C$ when $t<T$ and $C_{T}=C+F$. The calculation of the bond price with discrete annual compounding is shown in code 3.4.

```
#include <cmath>
#include <vector>
using namespace std;
double bonds_price_discrete(const vector <double }>&&\mathrm{ times,
                                    const vector < double >& cashflows,
                    const double& r) {
    double p=0;
    for (int i=0;i<times.size();i++) {
        p += cashflows[i]/(pow((1+r),times[i]));
    };
    return p;
};
```

C++ Code 3.4: Bond price calculation with discrete, annual compounding.

Yield to maturity

Since bonds are issued in terms of interest rate, it is also useful to find an interest rate number that summarizes the terms of the bond. The obvious way of doing that is asking the question: What is the internal rate of return on the investment of buying the bond now and keeping the bond to maturity? The answer to that question is the yield to maturity of a bond. The yield to maturity is the interest rate that makes the present value of the future coupon payments equal to the current bond price, that is, for a known price B_{0}, the yield is the solution y to the equation

$$
\begin{equation*}
B_{0}=\sum_{t=1}^{T} \frac{C_{t}}{(1+y)^{t}} \tag{3.1}
\end{equation*}
$$

This calculation therefore has the same qualifications as discussed earlier, it supposes reinvestment of coupon at the bond yield. There is much less likelihood we'll have technical problems with multiple
solutions when doing this yield estimation for bonds, since the structure of cash flows usually is such that there exist only one real solution to the equation. The algorithm for finding a bonds yield to maturity shown in code 3.5 is thus simple bisection. We know that the bond yield is above zero and set zero as a lower bound on the bond yield. We then find an upper bound on the yield by increasing the interest rate until the bond price with this interest rate is negative. We then bisect the interval between the upper and lower until we are "close enough."

```
#include <cmath>
using namespace std;
#include "fin_recipes.h"
double bonds_yield_to_maturity_discrete( const vector<double>& times,
                                    const vector<double>& cashflows,
                                    const double& bondprice) {
    const double ACCURACY = 1e-5;
    const int MAX_ITERATIONS = 200;
    double bot=0, top=1.0;
    while (bonds_price_discrete(times, cashflows, top) > bondprice) { top = top*2; };
    double r = 0.5 * (top+bot);
    for (int i=0;i<MAX_ITERATIONS; i++){
        double diff = bonds_price_discrete(times, cashflows,r) - bondprice;
        if (fabs(diff)<ACCURACY) return r;
        if (diff>0.0) { bot=r;}
        else { top=r;};
        r = 0.5 * (top+bot);
    };
    return r;
};
```

C++ Code 3.5: Bond yield calculation with discrete, annual compounding

A 3 year bond with a face value of $\$ 100$ makes annual coupon payments of 10%. The current interest rate (with annual compounding) is 9%.

1. Find the bond's current price.
2. Find the bond's yield to maturity.
```
C++ program:
void test_bonds_price_discrete(){
    vector<double> cflows; cflows.push_back(10); cflows.push_back(10); cflows.push_back(110);
    vector<double> times; times.push_back(1); times.push_back(2); times.push_back(3);
    double r=0.09;
    double B = bonds_price_discrete(times, cflows, r);
    cout << " Bond price, 9\% discretely compounded interest = " << B << endl;
    cout << " bond yield to maturity = " << bonds_yield_to_maturity_discrete(times, cflows, B) << endl;
};
Output from C++ program:
    Bond price, 9% discretely compounded interest = 102.531
    bond yield to maturity = 0.09
```


Duration

When holding a bond one would like to know how sensitive the value of the bond is to changes in economic environment. The most relevent piece of the economic environment is the current interest rate.

An important component of such calculation is the duration of a bond. The duration of a bond should be interpreted as the weighted average maturity of the bond, and is calculated as

$$
\text { Duration }=\frac{\sum_{t} t \frac{C_{t}}{(1+r)^{t}}}{\text { Bond Price }}
$$

where C_{t} is the cash flow in period t, and r the interest rate. Using the bond price calculated in equation 3.1 we calculate duration as

$$
\begin{equation*}
D=\frac{\sum_{t} \frac{t C_{t}}{\left(1+r^{t}\right.}}{\sum_{t} \frac{C_{t}}{(1+r)^{t}}} \tag{3.2}
\end{equation*}
$$

which is shown in code 3.6

```
#\mathrm{ include <cmath>}
#include <vector>
using namespace std;
double bonds_duration_discrete(const vector <double>& times,
                    const vector<double>& cashflows,
                    const double& r) {
    double B=0;
    double D=0;
    for (int i=0;i<times.size();i++){
        D += times[i] * cashflows[i] / pow(1+r,times[i]);
        B += cashflows[i] / pow(1+r,times[i]);
    };
    return D/B;
};
```

C++ Code 3.6: Bond duration using discrete, annual compounding and a flat term structure
An alternative approach to calculating duration is calculate the yield to maturity y for the bond, and use that in estimating the bond price. This is called Macaulay Duration. First one calculates y, the yield to maturity, from

$$
\text { Bond price }=\sum_{t=1}^{T} \frac{C_{t}}{(1+y)^{t}}
$$

and then use this y in the duration calculation:

$$
\begin{equation*}
\text { Macaulay duration }=\frac{\sum_{t} \frac{t C_{t}}{(1+)^{t}}}{\sum_{t} \frac{C_{t}}{(1+y)^{t}}} \tag{3.3}
\end{equation*}
$$

Code 3.7 implements this calculation.

```
#include "fin_recipes.h"
double bonds_duration_macaulay_discrete(const vector <double >& times,
                    const vector<double>& cashflows,
                    const double& bond_price) {
    double y = bonds_yield_to_maturity_discrete(times, cashflows, bond_price);
    return bonds_duration_discrete(times, cashflows, y); // use YTM in duration calculation
};
```

C++ Code 3.7: Calculating the Macaulay duration of a bond
Note though, that in the present case, with a flat term structure, these should produce the same number. If the bond is priced correctly, the yield to maturity must equal the current interest rate. If $r=y$ the two calculations in equations)3.2) and (3.3) obviously produces the same number.

3.2.3 Measuring bond sensitivity to interest rate changes

Now, the reason for why we say that we can measure the sensitivity of a bond price using duration. To a first approximation, ΔB_{0}, the change in the bond price for a small change in the interest rate Δr, can be calculated

$$
\frac{\Delta B_{0}}{B_{0}} \approx-\frac{D}{1+r} \Delta r
$$

where D is the bond's duration. For simplicity one often calculates the term in front of the Δy in the above, $\frac{D}{1+y}$ directly and terms it the bond's modified duration.

$$
\text { Modified Duration }=D^{*}=\frac{D}{1+r}
$$

The sensitivity calculation is then

$$
\frac{\Delta B_{0}}{B_{0}} \approx-D^{*} \Delta r
$$

The modified duration is also written in term's of the bond's yield to maturity y, and is then

$$
D^{*}=\frac{D}{1+y}
$$

Code 3.8 shows this calculation.

```
#include <vector>
using namespace std;
#include "fin_recipes.h"
double bonds_duration_modified_discrete (const vector <double >& times,
                                    const vector<double>& cashflows,
                    const double& bond_price){
    double y = bonds_yield_to_maturity_discrete(times, cashflows, bond_price);
    double D = bonds_duration_discrete(times, cashflows, y);
    return D/(1+y);
};
```

C++ Code 3.8: Modified duration
Approximating bond price changes using duration is illustrated in the following figure.

The modified duration measures the angle of the tangent at the current bond yield. Approximating the change in bond price with duration is thus only a first order approximation. To improve on this
approximation we also need to account for the curvature in the relationship between bond price and interest rate. To quantify this curvature we calculate the convexity of a bond.

$$
\begin{equation*}
\text { Convexity }=C x=\frac{1}{B_{0}} \frac{1}{(1+r)^{2}} \sum_{t=1}^{T}\left(t+t^{2}\right) \frac{C_{t}}{(1+r)^{t}} \tag{3.4}
\end{equation*}
$$

This calculation is implemented in code 3.9. . To improve on the estimate of how the bond price change

```
#include <cmath>
#include "fin_recipes.h"
double bonds_convexity_discrete(const vector <double >& times,
                                    const vector <double>& cashflows,
                                    const double& r) {
    double Cx=0;
    for (int i=0;i<times.size();i++){
        Cx}+=\mathrm{ cashflows[i]*times[i]*(times[i]+1)/(pow((1+r),times[i]));
    };
    double B=bonds_price_discrete(times, cashflows, r);
    return (Cx/(pow(1+r,2)))/B;
};
```

C++ Code 3.9: Bond convexity with a flat term structure and annual compounding
when the interest rates changes you will then calculate

$$
\frac{\Delta B_{0}}{B_{0}} \approx-D^{*} \Delta y+\frac{1}{2} C x(\Delta y)^{2}
$$

Formula 3.1 summarizes the above calculations.

Exercise 9.

Perpetual duration [4]

The term structure is flat. Consider the pricing of a perpetual bond. Let C be the per period cash flow

$$
B_{0}=\sum_{t=1}^{\infty} \frac{C}{(1+r)^{t}}=\frac{C}{r}
$$

1. Determine the first derivative of the price with respect to the interest rate.
2. Find the duration of the bond.

Exercise 10.

Consider an equally weighted portfolio of two bonds, A and B. Bond A is a zero coupon bond with 1 year to maturity. Bond B is a zero coupon bond with 3 years to maturity. Both bonds have face values of 100 . The current interest rate is 5%.

1. Determine the bond prices.
2. Your portfolio is currently worth 2000. Find the number of each bond invested.
3. Determine the duration of the portfolio.
4. Determine the convexity of your position.

Bond Price $\left(B_{0}\right)$

$$
B_{0}=\sum_{t=1}^{T} \frac{C_{t}}{(1+r)^{t}}
$$

Yield to maturity y solves

$$
B_{0}=\sum_{t=1}^{T} \frac{C_{t}}{(1+y)^{t}}
$$

Duration (D)

$$
D=\frac{1}{B_{0}} \sum_{t=1}^{T} \frac{t C_{t}}{(1+r)^{t}}
$$

Macaulay duration

$$
D=\frac{1}{B_{0}} \sum_{t=1}^{T} \frac{t C_{t}}{(1+y)^{t}}
$$

Modified duration

$$
D^{*}=\frac{D}{1+y}
$$

Convexity ($C x$)

$$
\mathrm{Cx}=\frac{1}{B_{0}} \frac{1}{(1+r)^{2}} \sum_{t=1}^{T}\left(t+t^{2}\right) \frac{C_{t}}{(1+r)^{t}}
$$

Approximating bond price changes

$$
\begin{aligned}
& \frac{\Delta B_{0}}{B_{0}} \approx-D^{*} \Delta y \\
& \frac{\Delta B_{0}}{B_{0}} \approx-D^{*} \Delta y+\frac{1}{2} \times \mathrm{Cx} \times(\Delta y)^{2}
\end{aligned}
$$

C_{t} : Cash flow at time t, r : interest rate, y : bond yield to maturity, B_{0} : current bond price. Bond pays coupon at evenly spaced dates $t=1,2,3 \ldots, T$.

Formula 3.1: Bond pricing formulas with a flat term structure and discrete, annual compounding

A 3 year bond with a face value of $\$ 100$ makes annual coupon payments of 10%. The current interest rate (with annual compounding) is 9%.

1. Determine the current bond price.
2. Suppose the interest rate changes to 10%, determine the new price of the bond by direct calculation.
3. Instead of direct calculation, use duration to estimate the new price and compare it to the correct price.
4. Use convexity to improve on your estimation using duration.

Solving the above

1. The bond price:

$$
B_{0}=\frac{10}{(1+0.09)^{1}}+\frac{10}{(1+0.09)^{2}}+\frac{110}{(1+0.09)^{3}}=102.531
$$

2. If the interest rate increases to 10%, the bond will be selling at par, equal to 100 , which can be confirmed with direct computation:

$$
B_{0}=\frac{10}{(1+0.1)^{1}}+\frac{10}{(1+0.1)^{2}}+\frac{110}{(1+0.1)^{3}}=100
$$

3. Calculate the bond's duration:

$$
D=\frac{1}{102.531}\left(\frac{1 \cdot 10}{1.09}+\frac{2 \cdot 10}{1.09^{2}}+\frac{3 \cdot 110}{1.09^{3}}\right)=2.74
$$

Modified duration:

$$
D^{*}=\frac{D}{1+r}=\frac{2.74}{1.09}=2.51
$$

Let us now calculate the change in the bond price

$$
\frac{\Delta B_{0}}{B_{0}}=-D^{*} \Delta y=-2.51 \cdot 0.01=-0.0251
$$

Which means theat the bond price changes to:

$$
B_{0}+\delta B_{0}=102.531+\left(\frac{\Delta B_{0}}{B_{0}}\right) B_{0}=102.531-0.0251 \cdot 102.531=99.957
$$

4. Calculate the bond's convexity

$$
C x=\frac{1}{(1+0.09)^{2}} \frac{1}{102.531}\left(\frac{(1+1) \cdot 10}{1.09}+\frac{\left(2^{2}+2\right) \cdot 10}{1.09^{2}}+\frac{\left(3+3^{2}\right) \cdot 110}{1.09^{3}}\right)=8.93
$$

Recalculating the change in the bond price using convexity:

$$
\frac{\Delta B_{0}}{B_{0}}=-D^{*} \Delta y+\frac{1}{2} C_{x} y^{2}=-2.51 \cdot 0.01+\frac{1}{2} 8.93(0.01)^{2}=-0.0251+0.00044=-0.02465
$$

Use this to re-estimate the bond price:

$$
B_{0}+\Delta B_{0}=102.531\left(1+\left(\frac{\Delta B_{0}}{B_{0}}\right) B_{0}\right)=102.531(1-0.02465)=100.0036
$$

Most of the same calculations are shown below:

```
C++ program
void test_bonds_duration_discrete(){
    vector<double> cflows; cflows.push_back(10); cflows.push_back(10); cflows.push_back(110);
    vector<double> times; times.push_back(1); times.push_back(2); times.push_back(3);
    double r=0.09;
    double B = bonds_price_discrete(times, cflows, r)
```


3.3 Continously compounded interest

Such discrete compounding as we have just discussed is not the only alternative way to approximate the discount factor. The discretely compounded case assumes that interest is added at discrete points in time (hence the name). However, an alternative assumption is to assume that interest is added continously. If compounding is continous, and r is the interest rate, one would calculate the current price of reciving one dollar at a future date t as

$$
P_{t}=e^{-r t}
$$

Formula 3.2 summarizes some rules for translating between continously compounded and discretly compounded interest rates.

$$
\begin{aligned}
& r=n \ln \left(1+\frac{r_{n}}{n}\right) \\
& r_{n}=n\left(e^{\frac{r}{n}}-1\right)
\end{aligned}
$$

Future value $=e^{r t}$
Present value $=e^{-r t}$
Notation: r_{n} : interest rate with discrete compounding, n : compounding periods per year. r : interest rate with continuous compounding, t : time to maturity.

Formula 3.2: Translating between discrete and continous compounding

3.3.1 Present value

Applying this to a set of cash flows at future dates $t_{1}, t_{2}, \ldots, t_{n}$, we get the following present value calculation:

$$
P V=\sum_{i=1}^{n} e^{-r t_{i}} C_{t_{i}}
$$

This calculation is implemented as shown in code 3.10.

```
#include <cmath>
#include <vector>
using namespace std;
double cash_flow_pv( const vector<double>& cflow_times,
        const vector <double }>&&\mathrm{ cflow_amounts,
        const double& r){
    double PV =0.0;
    for (int t=0; t<cflow_times.size();t++) {
        PV += cflow_amounts[t] * exp(-r*cflow_times[t]);
    };
    return PV;
};
```

C++ Code 3.10: Present value calculation with continously compounded interest
In much of what follows we will work with the case of continously compounded interest. There is a number of reasons why, but a prime reason is actually that it is easier to use continously compounded interest than discretely compounded, because it is easier to deal with uneven time periods. Discretely compounded interest is easy to use with evenly spaced cash flows (such as annual cash flows), but harder otherwise.

3.3.2 Bond pricing and analysis

We will go over the same concepts as covered in the previous section on bond pricing. There are certain subtle differences in the calculations. Formula 3.3 corresponds to the earlier summary in formula 3.1.

Bond Price B_{0} :

$$
B_{0}=\sum_{i} e^{\left.-r t_{i}\right)} C_{t_{i}}
$$

Yield to maturity y solves:

$$
B_{0}=\sum_{i} C_{t_{i}} e^{-y t_{i}}
$$

Duration D :

$$
D=\frac{1}{B_{0}} \sum_{i} t_{i} C_{t_{i}} e^{-r t_{i}}
$$

Macaulay duration

$$
D=\frac{1}{B_{0}} \sum_{i} t_{i} C_{t_{i}} e^{-y t_{i}}
$$

Convexity $C x$:

$$
C x=\frac{1}{B_{0}} \sum_{i} C_{t_{i}} t_{i}^{2} e^{-r t_{i}}
$$

Approximating bond price changes

$$
\begin{aligned}
& \frac{\Delta B_{0}}{B_{0}} \approx-D \Delta y \\
& \frac{\Delta B_{0}}{B_{0}} \approx-D \Delta y+\frac{1}{2} \times \mathrm{Cx} \times(\Delta y)^{2}
\end{aligned}
$$

Bond paying cash flows $C_{t_{1}}, C_{t_{2}}, \ldots$ at times t_{1}, t_{2}, \ldots Notation: B_{0} : current bond price. e: natural exponent.
Formula 3.3: Bond pricing formulas with continously compounded interest and a flat term structure
Some important differences is worth pointing out. When using continously compounded interest, one does not need the concept of modified duration. In the continously compounded case one uses the calculated duration directly to approximat bond changes, as seen in the formulas describing the approximation of bond price changes. Note also the difference in the convexity calculation, one does not divide by $(1+y)^{2}$ in the continously compounded formula, as was done in the discrete case.
Codes $3.11,3.12,3.13$ and 3.14 show continously compounded analogs of the earlier codes for the discretely compounded case.

```
#include <cmath>
#include <vector>
using namespace std;
double bonds_price(const vector<double >& cashflow_times,
                const vector <double }>&&\mathrm{ cashflows,
                const double& r) {
    double p=0;
    for (int i=0;i<cashflow_times.size();i++) {
        p += exp(-r*cashflow_times[i])*cashflows[i];
    };
    return p;
};
```

C++ Code 3.11: Bond price calculation with continously compounded interest and a flat term structure

```
#include <cmath>
#include <vector>
using namespace std;
double bonds_duration(const vector <double >& cashflow_times,
                                    const vector < double>& cashflows,
                                    const double& r) {
    double S=0;
    double D1=0;
    for (int i=0;i<cashflow_times.size();i++){
        S += cashflows[i] * exp(-r*cashflow_times[i]);
        D1 += cashflow_times[i] * cashflows[i] * exp(-r*cashflow_times[i]);
    };
    return D1 / S;
};
```

C++ Code 3.12: Bond duration calculation with continously compounded interest and a flat term structure

```
#include "fin_recipes.h"
double bonds_duration_macaulay(const vector<double>& cashflow_times,
                    const vector<double >& cashflows,
                    const double& bond_price) {
    double y = bonds_yield_to_maturity(cashflow_times, cashflows, bond_price)
    return bonds_duration(cashflow_times, cashflows, y); // use YTM in duration
};
```

C++ Code 3.13: Calculating the Macaulay duration of a bond with continously compounded interest and a flat term structure

```
#include <cmath>
#include "fin_recipes.h"
double bonds_convexity(const vector <double >& times,
            const vector<double>& cashflows,
            const double& r ) {
    double C=0;
    for (int i=0;i<times.size();i++){
        C += cashflows[i] * pow(times[i],2) * exp(-r*times[i]);
    };
    double B=bonds_price(times, cashflows,r);
    return C/B;
};
```

C++ Code 3.14: Bond convexity calculation with continously compounded interest and a flat term structure

3.4 Further readings

The material in this chapter is covered in most standard textbooks of corporate finance (e.g. Brealey and Myers (2002) or Ross, Westerfield, and Jaffe (2005)) and investments (e.g. Bodie, Kane, and Marcus (2005), Haugen (2001) or ?). Shiller (1990) is a good reference on the term structure.

Chapter 4

The term structure of interest rates and an object lesson

In this chapter we expand on the analysis of the previous chapter by relaxing the "one interest rate" assumption used there and allow the spot rates to change as you change the time you are discounting over.
Recall that we said that the present value of a set of cash flows is calculated as

$$
\begin{aligned}
& P V=\sum_{i=1}^{N} d_{t_{i}} C_{t_{i}} \\
& C_{t_{1}} \\
& C_{t_{2}} \\
& 0 t_{1} \\
& t_{2} t_{2} \\
& \\
& \\
& t_{t_{N}} \\
& \text { time }
\end{aligned}
$$

To make this applicable to cash flows received at any future date t we potentially need an infinite number of discount factors d_{t}. This is not feasible, so some lower dimensional way needs to be found to approximate d_{t}, but with more flexibility than the extremely strong assumption that there is one fixed interest rate r, and that the discount factor for any time t is calculated as either $d_{t}=1 /(1+r)^{t}$ (discrete compounding), or $d_{t}=e^{-r t}$ (continuous compounding), which we used in the previous chapter.
In this chapter we first show that this approximation of the discount factors can be done in either terms of discount factors directly, interest rates, or forward rates. Either of these are useful ways of formulating a term structure, and either of them can be used, since there are one to one transformations between either of these three. We then go on to demonstrate how a feature of $\mathrm{C}++$, the ability to create an abstract datatype as an object, or class, is very useful for the particular application of defining and using a term structure. It is in fact this particular application, to create a term structure class, which really illustrates the power of C++, and why you want to use an object oriented language instead of classical langues like FORTRAN and C, or matrix languages like Gauss or Matlab for many financial calculations.

4.1 The interchangeability of discount factors, spot interest rates and forward interest rates

The term structure can be specified in terms of either discount factors, spot interest rates or forward interest rates. A discount factor is the current price for a future (time t) payment of one dollar. To find the current value $P V$ of a cash flow C_{t}, we calculate $P V=d_{t} C_{t}$. This discount factor can also be specified in terms of interest rates, where we let r_{t} be the relevant interest rate (spot rate) for discounting a t-period cashflow. Then we know that the present value $P V=e^{-r_{t} t} C_{t}$. Since these two methods of calculating the present value must be consistent,

$$
P V=d_{t} C_{t}=e^{-r_{t} t} C_{t}
$$

and hence

$$
d_{t}=e^{-r_{t} t}
$$

Note that this equation calculates d_{t} given r_{t}. Rearranging this equation we find the spot rate r_{t} in terms of discount factors

$$
r_{t}=\frac{-\ln \left(d_{t}\right)}{t}
$$

An alternative concept that is very useful is a forward interest rate, the yield on borrowing at some future date t_{1} and repaying it at a later date t_{2}. Let $f_{t_{1}, t_{2}}$ be this interest rate. If we invest one dollar today, at the current spot rate spot rate till period t_{1} and the forward rate for the period from t_{1} to t_{2} (which is what you would have to do to make an actual investment), you would get the following future value

$$
F V=e^{r_{t_{1}} t_{1}} e^{f_{t_{1}, t_{2}}\left(t_{2}-t_{1}\right)}
$$

The present value of this forward value using the time t_{2} discount factor has to equal one:

$$
d_{t_{2}} F V=1
$$

These considerations are enough to calculate the relevant transforms. The forward rate for borrowing at time t_{1} for delivery at time t_{2} is calculated as

$$
f_{t_{1}, t_{2}}=\frac{-\ln \left(\frac{d_{t_{2}}}{d_{t_{1}}}\right)}{t_{2}-t_{1}}=\frac{\ln \left(\frac{d_{t_{1}}}{d_{t_{2}}}\right)}{t_{2}-t_{1}}
$$

The forward rate can also be calculated directly from yields as

$$
f_{t_{1}, t_{2}}=r_{t_{2}} \frac{t_{2}}{t_{2}-t_{1}}-r_{t_{1}} \frac{t_{1}}{t_{2}-t_{1}}
$$

$$
\begin{aligned}
& d_{t}=e^{-r_{t} t} \\
& r_{t}=\frac{-\ln \left(d_{t}\right)}{t} \\
& f_{t_{1}, t_{2}}=\frac{-\ln \left(\frac{d_{t_{1}}}{d_{t_{2}}}\right)}{t_{2}-t_{1}} \\
& f_{t_{1}, t_{2}}=r_{t_{2}} \frac{t_{2}}{t_{2}-t_{1}}-r_{t_{1}} \frac{t_{1}}{t_{2}-t_{1}}
\end{aligned}
$$

Notation: d_{t} discount factor for payment at time t, r_{t} : spot rate applying to cash flows at time t. $f_{t_{1}, t_{2}}$ forward rate between time t_{1} and t_{2}, i.e. the interest rate you would agree on today on the future transactions.

Code 4.1 shows the implementation of these transformations.

```
#include <cmath>
using namespace std;
double term_structure_yield_from_discount_factor(const double& d_t, const double& t) {
    return (-log(d_t)/t);
}
double term_structure_discount_factor_from_yield(const double& r, const double& t) {
    return exp(-r*t);
};
double term_structure_forward_rate_from_discount_factors(const double& d_t1, const double& d_t2,
                                    const double& time) {
    return (log (d_t1/d_t2))/time;
};
double term_structure_forward_rate_from_yields(const double& r_t1, const double& r_t2,
                    const double& t1, const double& t2) {
    return r_t2*t2/(t2-t1)-r_t1*t1/(t2-t1);
};
```

C++ Code 4.1: Term structure transformations

```
C++ program:
void test_termstru_transforms(){
    double t1=1; double r_t1=0.05; double d_t1 = term_structure_discount_factor_from_yield(r_t1,t1);
    cout << " a " << t1 << " period spot rate of " << r_t1
        <<" corresponds to a discount factor of " << d_t1 << endl;
    double t2=2; double d_t2 = 0.9;
    double r_t2 = term_structure_yield_from_discount_factor(d_t2,t2);
    cout << " a " << t2 << " period discount factor of " << d_t2
        << " corresponds to a spot rate of " << r_t2 << endl;
    cout << " the forward rate between " << t1 << " and " << t2
        <<" is " << term_structure_forward_rate_from_discount_factors(d_t1,d_t2,t2-t1)
        << " using discount factors " << endl;
    cout << " and is " << term_structure_forward_rate_from_yields(r_t1,r_t2,t1,t2)
        << " using yields " << endl;
};
Output from C++ program:
    a 1 period spot rate of 0.05 corresponds to a discount factor of 0.951229
    a 2 period discount factor of 0.9 corresponds to a spot rate of 0.0526803
    the forward rate between 1 and 2 is 0.0553605 using discount factors
    and is 0.0553605 using yields
```

Example 4.1: Term structure transformations

4.2 The term structure as an object

From the previous we see that the term structure can be described in terms of discount factors, spot rates or forward rates, but that does not help us in getting round the dimensionality problem. If we think in terms of discount factors, for a complete specification of the current term structure one needs an infinite number of discount factors $\left\{d_{t}\right\}_{t \in \mathbb{R}^{+}}$. It is perhaps easier to think about this set of discount factors as a function $d(t)$, that, given a nonnegative time t, returns the discount factor. Since we have established that there are three equivalent ways of defining a term structure, discount factors, spot rates and forward rates, we can therefore describe a term structure as a collection of three different functions that offer different views of the same underlying object.
A term structure is an abstract object that to the user should provide

- discount factors (prices of zero coupon bonds).
- spot rates (yields of zero coupon bonds).
- forward rates.
for any future maturity t. The user of a term structure will not need to know how the term structure is implemented, all that is needed is an interface that specifies the above three functions.
This is tailor made for being implemented as a C++ class. A class in C++ terms is a collection of data structures and functions that operate on these data structures. In the present context it is a way of specifying the three functions.

```
yield(t)
discount_factor(t)
forward_rate(t)
```


4.2.1 Base class

Code 4.2 shows how we describe the generic term structure as a C++ class.

```
#ifndef _TERM_STRUCTURE_CLASS_H_
#define _TERM_STRUCTURE_CLASS_H_
class term_structure_class {
public:
    virtual double yield(const double& t) const;
    virtual double discount_factor(const double& t) const;
    virtual double forward_rate(const double& t1, const double& t2) const;
    virtual ~
};
#endif
```

C++ Code 4.2: Header file describing the term_structure base class
The code for these functions uses algorithms that are described earlier in this chapter for transforming between various views of the term structure. The term structure class merely provide a convenient interface to these algorithms.
Note that the definitions of calculations are circular. Any given specific type of term structure has to over-ride at least one of the functions yield, discount_factor or forward_rate.
We next consider two examples of specific term structures.

```
#include "fin_recipes.h"
term_structure_class::~ term_structure_class(){};
double term_structure_class::forward_rate(const double& t1, const double& t2) const{
    double d1 = discount_factor(t1);
    double d2 = discount_factor(t2);
    return term_structure_forward_rate_from_discount_factors(d1,d2,t2-t1);
};
double term_structure_class::yield(const double& t) const{
    return term_structure_yield_from_discount_factor(discount_factor(t),t);
};
double term_structure_class::discount_factor(const double& t) const {
    return term_structure_discount_factor_from_yield(yield(t),t);
};
```

C++ Code 4.3: Default code for transformations between discount factors, spot rates and forward rates in a term structure class

4.2.2 Flat term structure.

The flat term structure overrides both the yield member function of the base class.
The only piece of data this type of term structure needs is an interest rate.

```
\#ifndef _TERM_STRUCTURE_CLASS_FLAT_
\#define _TERM_STRUCTURE_CLASS_FLAT_
\#include "term_structure_class.h"
class term_structure_class_flat : public term_structure_class \{
private:
    double \(\mathrm{R}_{-}\)/ / interest rate
public:
    term_structure_class_flat(const double\& r);
    virtual ~term_structure_class_flat();
            virtual double yield(const double\& t) const;
    // virtual double discount_factor(const double \(\mathcal{B} t\) ) const;
    void set_int_rate(const double\& r);
\};
\#endif
```

C++ Code 4.4: Header file for term structure class using a flat term structure

```
//#include"fin_recipes.h"
//#include"term_structure_class_flat.h"
#include "fin_recipes.h"
#include <iostream>
#include <cmath>
using namespace std;
term_structure_class_flat::term_structure_class_flat(const double& r){ R_= r; };
term_structure_class_flat::~ term_structure_class_flat(){}
double term_structure_class_flat::yield(const double& T) const { if (T>=0) return R_; return 0; };
/*
double term_structure_class_flat::discount_factor(const double& T) const {
    if (T>=0.0){ return exp (-R-*T); }; return 0;
};
double term_structure_class_flat::forward_rate(const double} t1, const doubleध t2) const{
    double d1 = discount_factor(t1);
    double d2 = discount_factor(t2);
    return term_structure_forward_rate_from_discount_factors(d1,d2,t2-t1);
};
*/
void term_structure_class_flat::set_int_rate(const double& r) { R_= r; };
```

C++ Code 4.5: Implementing term structure class using a flat term structure

```
C++ program:
void test_term_structure_class_flat(){
    term_structure_class_flat ts(0.05);
    double t1=1;
    cout << "discount factor t1 = " << t1 << ":" << ts.discount_factor(t1) << endl;
    double t2=2;
    cout << "discount factor t2=" << t2 << ":" << ts.discount_factor(t2) << endl;
    cout << "spot rate t = " << t1 << ":" << ts.yield(t1) << endl;
    cout << "spot rate t = " << t2 << ":" << ts.yield(t2) << endl;
    cout << "forward rate from t1= " << t1 << " to t2= " << t2 << ":" << ts.forward_rate(t1,t2) << endl;
};
Output from C++ program:
discount factor t1 = 1:0.951229
discount factor t2 = 2:0.904837
spot rate t = 1:0.05
spot rate t = 2:0.05
forward rate from t1= 1 to t2= 2:0.05
```


4.3 Using the currently observed term structure.

To just use todays term structure, we need to take the observations of yields that is observed in the market and use these to generate a term structure. The simplest possible way of doing this is to linearly interpolate the currently observable zero coupon yields.

4.3.1 Linear Interpolation.

If we are given a set of yields for various maturities, the simplest way to construct a term structure is by straightforward linear interpolation between the observations we have to find an intermediate time. For many purposes this is "good enough." This interpolation can be on either yields, discount factors or forward rates, we illustrate the case of linear interpolation of spot rates.

Computer algorithm, linear interpolation of yields. Note that the algorithm assumes the yields are ordered in increasing order of time to maturity.

```
#include <vector>
using namespace std;
#include "fin_recipes.h"
double term_structure_yield_linearly_interpolated(const double& time,
                                    const vector<double>& obs_times,
                                    const vector<double>& obs_yields) {
    // assume the yields are in increasing time to maturity order.
    int no_obs = obs_times.size();
    if (no_obs<1) return 0;
    double t_min = obs_times[0];
    if (time <= t_min) return obs_yields[0]; // earlier than lowest obs.
    double t_max = obs_times[no_obs-1];
    if (time >= t_max) return obs_yields[no_obs-1]; // later than latest obs
    int t=1; // find which two observations we are between
    while ( (t<no_obs) && (time>obs_times[t])) { ++t; };
    double lambda = (obs_times[t]-time)/(obs_times[t]-obs_times[t-1]);
    // by ordering assumption, time is between t-1,t
    double r = obs_yields[t-1] * lambda + obs_yields[t] * (1.0-lambda);
    return r;
};
```

C++ Code 4.6: Interpolated term structure from spot rates

```
C++ program:
void test_termstru_interpolated(){
    vector<double> times;
    vector<double> yields;
    times.push_back(0.1); times.push_back(0.5); times.push_back(1);
    yields.push_back(0.1); yields.push_back(0.2); yields.push_back(0.3)
    times.push_back(5); times.push_back(10);
    yields.push_back(0.4); yields.push_back(0.5);
    cout << " yields at times: " << endl;
    cout << " t=.1 " << term_structure_yield_linearly_interpolated(0.1,times,yields) << endl;
    cout << " t=0.5 " << term_structure_yield_linearly_interpolated(0.5,times,yields) << endl;
    cout << " t=1 " << term_structure_yield_linearly_interpolated(1,times,yields) << endl;
    cout <<" t=3" << term_structure_yield_linearly_interpolated(3,times,yields) << endl
    cout << " t=5 " << term_structure_yield_linearly_interpolated(5,times,yields) << endl;
    cout << " t=10" << term_structure_yield_linearly_interpolated(10,times,yields) << endl
};
Output from C++ program:
    yields at times:
    t=.1 0.1
    t=0.5 0.2
    t=1 0.3
    t=3 0.35
    t=5 0.4
    t=10 0.5
```


4.3.2 Interpolated term structure class.

The interpolated term structure implemented here uses a set of observations of yields as a basis, and for observations in between observations will interpolate between the two closest. The following only provides implementations of calculation of the yield, for the other two rely on the base class code.
There is some more book-keeping involved here, need to have code that stores observations of times and yields.

```
#ifndef _TERM_STRUCTURE_CLASS_INTERPOLATED_
#define _TERM_STRUCTURE_CLASS_INTERPOLATED_
#include "term_structure_class.h"
#include <vector>
using namespace std;
class term_structure_class_interpolated : public term_structure_class {
private:
    vector<double> times_; // use to keep a list of yields
    vector<double> yields_;
    void clear();
public:
    term_structure_class_interpolated();
    term_structure_class_interpolated(const vector <double >& times, const vector <double >& yields);
    virtual ~ term_structure_class_interpolated();
    term_structure_class_interpolated(const term_structure_class_interpolated&);
    term_structure_class_interpolated operator= (const term_structure_class_interpolated&);
    int no_observations() const { return times_.size(); };
    virtual double yield(const double& T) const;
    void set_interpolated_observations(vector <double > & times, vector<double > & yields);
};
#endif
```

C++ Code 4.7: Header file describing a term structure class using linear interpolation between spot rates

```
#include "fin_recipes.h"
void term_structure_class_interpolated::clear(){
    times_.erase(times_.begin(), times_.end());
    yields_.erase(yields_.begin(), yields_.end());
};
term_structure_class_interpolated::term_structure_class_interpolated():term_structure_class(){clear();};
term_structure_class_interpolated::term_structure_class_interpolated(const vector<double >& in_times,
                                    const vector<double>& in_yields) {
    clear();
    if (in_times.size()!=in_yields.size()) return;
    times_= vector<double>(in_times.size());
    yields_= vector<double>(in_yields.size());
    for (int i=0;i<in_times.size();i++) {
        times_[i]=in_times[i];
        yields_[i]=in_yields[i];
    };
};
term_structure_class_interpolated::~ term_structure_class_interpolated(){ clear();};
term_structure_class_interpolated::term_structure_class_interpolated(const term_structure_class_interpolated& term) {
    times_ = vector<double> (term.no_observations());
    yields_ = vector<double }>\mathrm{ (term.no_observations());
    for (int i=0;i<term.no_observations();i++){
        times_[i] = term.times_[i];
        yields_[i] = term.yields_[i];
    };
};
term_structure_class_interpolated
term_structure_class_interpolated::operator= (const term_structure_class_interpolated& term) {
    times_ = vector<double> (term.no_observations());
    yields_ = vector<double> (term.no_observations());
    for (int i=0;i<term.no_observations();i++){
        times_[i] = term.times_[i];
        yields_[i] = term.yields_[i];
    };
    return (*this);
};
double term_structure_class_interpolated::yield(const double& T) const {
    return term_structure_yield_linearly_interpolated(T, times_, yields_);
};
void
term_structure_class_interpolated::set_interpolated_observations(vector<double > & in_times,
                                    vector<double>& in_yields) {
    clear();
    if (in_times.size()!=in_yields.size()) return;
    times_= vector<double>(in_times.size());
    yields_= vector<double>(in_yields.size());
    for (int i=0;i<in_times.size();i++) {
        times_[i]=in_times[i];
        yields_[i]=in_yields[i];
    };
};
```

C++ Code 4.8: Term structure class using linear interpolation between spot rates

```
C++ program:
void test_term_structure_class_interpolated(){
    vector<double> times; times.push_back(0.1);
    vector<double> spotrates; spotrates.push_back(0.05);
    times.push_back(1); times.push_back(5);
    spotrates.push_back(0.07);spotrates.push_back(0.08);
    term_structure_class_interpolated ts(times,spotrates);
    double t1=1;
    cout << "discount factor t1 = " << t1 < < ":" << ts.discount_factor(t1) << endl;
    double t2=2;
    cout << "discount factor t2 = " << t2 << ":" << ts.discount_factor(t2) << endl;
    cout << "spot rate t = " << t1 << ":" << ts.yield(t1) << endl;
    cout << "spot rate t = " << t2 << ":" << ts.yield(t2) << endl;
    cout << "forward rate from t1= " << t1 << " to t2= " << t2 << ":" << ts.forward_rate(t1,t2) <<endl;
};
Output from C++ program:
discount factor t1 = 1:0.932394
discount factor t2 = 2:0.865022
spot rate t = 1:0.07
spot rate t = 2:0.0725
forward rate from t1= 1 to t2= 2:0.075
```


4.4 Bond calculations with a general term structure and continous compounding

Bond pricing with a continously compounded term structure

Coupon bond paying coupons at dates t_{1}, t_{2}, \ldots :
Bond Price B_{0} :

$$
B_{0}=\sum_{i} d_{t_{i}} C_{t_{i}}=\sum_{i} e^{-r_{t_{i}} t_{i}} C_{t_{i}}
$$

Duration D :

$$
\begin{aligned}
D & =\frac{1}{B_{0}} \sum_{i} t_{i} d_{t_{i}} C_{t_{i}} \\
D & =\frac{1}{B_{0}} \sum_{i} t_{i} e^{-r_{t_{i}} t_{i}} C_{t_{i}} \\
D & =\frac{1}{B_{0}} \sum_{i} t_{i} e^{-y t_{i}} C_{t_{i}}
\end{aligned}
$$

Yield to maturity y solves:

$$
B_{0}=\sum_{i} C_{t_{i}} e^{-y t_{i}}
$$

Convexity $C x$:

$$
\begin{aligned}
& C x=\frac{1}{B_{0}} \sum_{i} t_{i}^{2} d_{t_{i}} C_{t_{i}} \\
& C x=\frac{1}{B_{0}} \sum_{i} t_{i}^{2} e^{-r_{t_{i}} t_{i}} C_{t_{i}} \\
& C x=\frac{1}{B_{0}} \sum_{i} t_{i}^{2} e^{-y t_{i}} C_{t_{i}}
\end{aligned}
$$

Codes 4.9 and 4.10 illustrates how one would calculate bond prices and duration if one has a term structure class.

```
#include <vector>
using namespace std;
#include "fin_recipes.h"
double bonds_price(const vector<double>& cashflow_times,
                const vector < double >& cashflows,
            const term_structure_class& d) {
    double p = 0;
    for (unsigned i=0;i<cashflow_times.size();i++) {
        p += d.discount_factor(cashflow_times[i])*cashflows[i];
    };
    return p;
};
```

C++ Code 4.9: Pricing a bond with a term structure class

References Shiller (1990) is a good reference on the use of the term structure.

```
#include "fin_recipes.h"
double bonds_duration(const vector <double >& cashflow_times,
                    const vector<double>& cashflow_amounts,
                            const term_structure_class& d ) {
    double S=0;
    double D1=0
    for (unsigned i=0;i<cashflow_times.size();i++){
        S += cashflow_amounts[i] * d.discount_factor(cashflow_times[i]);
        D1 += cashflow_times[i] * cashflow_amounts[i] * d.discount_factor(cashflow_times[i]);
    };
    return D1/S;
};
```

C++ Code 4.10: Calculating a bonds duration with a term structure class

```
#include "fin_recipes.h"
#include <cmath>
double bonds_convexity(const vector<double>& cashflow_times,
    const vector<double>& cashflow_amounts,
    const term_structure_class& d ) {
    double B=0;
    double }\textrm{Cx}=
    for (unsigned i=0;i<cashflow_times.size();i++){
        B += cashflow_amounts[i] * d.discount_factor(cashflow_times[i]);
        Cx += pow(cashflow_times[i],2) * cashflow_amounts[i] * d.discount_factor(cashflow_times[i]);
    };
    return Cx/B;
};
```

C++ Code 4.11: Calculating a bonds convexity with a term structure class

```
C++ program:
void test_term_structure_class_bond_calculations(){
    vector <double> times; times.push_back(1); times.push_back(2);
    vector <double> cashflows; cashflows.push_back(10); cashflows.push_back(110);
    term_structure_class_flat tsflat(0.1);
    cout << " price = " << bonds_price (times, cashflows, tsflat) << endl;
    cout << " duration = " << bonds_duration(times, cashflows, tsflat) << endl;
    cout << " convexity = " << bonds_convexity(times, cashflows, tsflat) << endl;
};
Output from C++ program:
    price = 99.1088
    duration = 1.9087
    convexity = 3.72611
```


Chapter 5

Futures algoritms.

In this we discuss algoritms used in valuing futures contracts.

5.1 Pricing of futures contract.

The futures price of an asset without payouts is the future value of the current price of the assset.

$$
f_{t}=e^{r(T-t)} S_{t}
$$

```
#include <cmath>
using namespace std;
double futures_price(const double& S, // current price of underlying asset
    const double& r, // risk free interest rate
        const double& time_to_maturity) {
    return exp(r*}\mp@subsup{}{}{*}\mathrm{ time_to_maturity)*S;
};
```

C++ Code 5.1: Futures price

```
C++ program:
void test_futures_price(){
    double }\textrm{S}=100\mathrm{ ; double r=0.10; double time=0.5;
    cout << " futures price = " << futures_price(S,r, time) << endl;
};
Output from C++ program:
    futures price = 105.127
```

Example 5.1: Futures price

Chapter 6

Binomial option pricing

Option and other derivative pricing is one of the prime "success stories" of modern finance. An option is a derivative security, the cash flows from the security is a function of the price of some other security, typically called the underlying security. A call option is a right, but not obligation, to buy a given quantity of the underlying security at a given price, called the exercise price K, within a certain time interval. A put option is the right, but not obligation, to sell a given quantity of the underlying security to an agreed excercise price within a given time interval. If an option can only be exercised (used) at a given date (the time interval is one day), the option is called an European Option. If the option can be used in a whole time period up to a given date, the option is called American.
An option will only be used if it is valuable to the option holder. In the case of a call option, this is when the exercise price K is lower than the price one alternatively could buy the underlying security for, which is the current price of the underlying security. Hence, options have never negative cash flows at maturity. Thus, for anybody to be willing to offer an option, they must have a cost when entered into. This cost, or price, is typically called an option premium. As notation, let C signify the price of a call option, P the price of a put option and S the price of the underlying security. All of these prices are indexed by time. We typically let 0 be "now" and T the final maturity date of the option. From the definition of the options, it is clear that at their last possible exercise date, the maturity date, they have cash flows.

$$
\begin{aligned}
C_{T} & =\max \left(0, S_{T}-K\right) \\
P_{T} & =\max \left(0, K-S_{T}\right)
\end{aligned}
$$

The challenge of option pricing is to determine the option premium C_{0} and P_{0}.
All pricing considers that the cashflows from the derivative is a direct function of the price of the underlying security. Pricing can therefore be done relative to the price of the underlying security. To price options it is necessary to make assumptions about the probability distribution of movements of the underlying security. We start by considering this in a particularly simple framework, the binomial assumption. The price of the underlying is currently S_{0}. The price can next period only take on two values, S_{u} and S_{d}.

If one can find all possible future "states," an enumeration of all possibilities, one can value a security by constructing artificial "probabilities", called "state price probabilities," which one use to find an artificial expected value of the underlying security, which is then discounted at the risk free interest rate. The binomial framework is particularly simple, since there are only two possible states. If we find the "probability" q of one state, we also find the probability of the other as $(1-q)$. Equation 6.1 demonstrates this calculation for the underlying security.

$$
\begin{equation*}
S_{0}=e^{-r}\left(q S_{u}+(1-q) S_{d}\right) \tag{6.1}
\end{equation*}
$$

Now, any derivative security based on this underlying security can be priced using the same "probability" q. The contribution of binomial option pricing is in actually calculating the number q. To do valuation,
start by introducing constants u and d implicitly defined by $S_{u}=u S_{0}$ and $S_{d}=d S_{0}$, and you get a process as illustrated in figure 6.1.

Figure 6.1: Binomial Tree
and calculate the artifical "probability" q as

$$
q=\frac{e^{r}-d}{u-d}
$$

The price of a one-period call option in a binomial framework is shown in formula 6.1 and implemented in code 6.1.

$$
\begin{aligned}
& C_{u}=\max \left(0, S_{u}-K\right) \\
& C_{d}=\max \left(0, S_{d}-K\right) \\
& C_{0}=e^{-r}\left(q C_{u}+(1-q) C_{d}\right) \\
& q=\frac{e^{r}-d}{u-d}
\end{aligned}
$$

$S_{u}=u S_{0}$ and $S_{d}=d S_{0}$ are the possible values for the underlying security next period, u and d are constants, r is the (continously compounded) risk free interest rate and K is the call option exercise price.

Formula 6.1: The single period binomal call option price

```
#include <cmath>
#include <algorithm>
using namespace std;
double option_price_call_european_binomial_single_period(const double& S, // spot price
                                    const double& X, // exercice price
                                    const double& r, // interest rate (per period)
                                    const double& u, // up movement
                                    const double& d){ // down movement
    double p_up = (exp(r)-d)/(u-d);
    double p_down = 1.0-p_up;
    double c_u = max(0.0,(u*S-X));
    double c_d = max(0.0,(d*S-X));
    double call_price = exp(-r)*(p_up*c_u+p_down**_d);
    return call_price;
};
```

C++ Code 6.1: Binomial European, one period

The "state price probability" q is found by an assumption of no arbitrage opportunities. If one has the possibility of trading in the underlying security and a risk free bond, it is possible to create a portfolio of these two assets that exactly duplicates the future payoffs of the derivative security. Since this portfolio has the same future payoff as the derivative, the price of the derivative has to equal the cost of the duplicating portfolio. Working out the algebra of this, one can find the expression for q as the function of the up and down movements u and d.

Exercise 11.

The price of the underlying security follows the binomial process

A one period call option has payoffs

1. Show how one can combine a position in the underlying security with a position in risk free bonds to create a portfolio which exactly duplicates the payoffs from the call.
2. Use this result to show the one period pricing formula for a call option shown in formula 6.1.

6.1 Multiperiod binomial pricing

Of course, an assumption of only two possible future states next period is somewhat unrealistic, but if we iterate this assumption, and assume that every date, there are only two possible outcomes next date, but then, for each of these two outcomes, there is two new outcomes, as illustrated in the next figure:

Iterating this idea a few times more, the number of different terminal states increases markedly, and we get closer to a realistic distribution of future prices of the underlying at the terminal date. Note that a crucial assumption to get a picture like this is that the factors u and d are the same on each date.

Pricing in a setting like this is done by working backwards, starting at the terminal date. Here we know all the possible values of the underlying security. For each of these, we calculate the payoffs from the derivative, and find what the set of possible derivative prices is one period before. Given these, we can find the option one period before this again, and so on. Working ones way down to the root of the tree, the option price is found as the derivative price in the first node.
For example, suppose we have two periods, and price a two period call option with exercise price K.

First step: Find terminal payoffs of derivative security:

Next step: Find the two possible call prices at time 1:

$$
\begin{aligned}
C_{u} & =e^{-r}\left(q C_{u u}+(1-q) C_{u d}\right) \\
C_{d} & =e^{-r}\left(q C_{u d}+(1-q) C_{d d}\right)
\end{aligned}
$$

Final step: Using the two possible payoffs at time $1, C_{u}$ and C_{d}, find option value at time 0 :

$$
C_{0}=e^{-r}\left(q C_{u}+(1-q) C_{d}\right)
$$

Thus, binomial pricing really concerns "rolling backward" in a binomial tree, and programming therefore concerns an efficient way of traversing such a tree. The obvious data structure for describing such a tree is shown in code 6.2, where the value in each node is calculated from finding out the number of up and down steps are used to get to the particular node.

```
#include <vector>
#include <cmath>
using namespace std;
vector< vector<double> > binomial_tree(const double& S0,
                                    const double& u,
                                    const double& d,
                                    const int& no_steps){
    vector< vector<double>> tree;
    for (int i=1;i<= no_steps;++i){
        vector<double>S(i);
        for (int j=0;j<i;++j){
            S[j] = S0* pow (u,j)*pow (d,i-j-1);
        };
        tree.push_back(S);
    };
    return tree
};
```

C++ Code 6.2: Building a binomial tree

Exercise 12.

In terms of computational efficiency the approcach of code 6.2 will not be optimal, since it requires a lot of calls to the pow () functional call. More efficient would be to carry out the tree building by doing the multiplication from the previous node, for example the j 'th vector is the $j-1$ 'th vector times u, and then one need to add one more node by multiplying the lowest element by d.

1. Implement such an alternative tree building procedure.

Basing the recursive calculation of a derivative price on a triangular array structure as shown in code 6.2 is the most natural approach, but with some cleverness based on understanding the structure of the binomial tree, we can get away with the more efficienent algorithm that is shown in code 6.3. Note that here we only use one vector<double>, not a triangular array as built above.

Exercise 13.

Implement pricing of single and multi period binomial put options.

Further reading The derivation of the single period binomial is e.g. shown in Bossaerts and Ødegaard (2001). Hull (2006) and McDonald (2006) are standard references.

```
#include <cmath> // standard mathematical library
#include <algorithm>
#include <vector>
// defining the max() operator
// STL vector templates
using namespace std;
```

double option_price_call_european_binomial_multi_period_given_ud(const double\& S, // spot price const double\& K, // exercice price const double\& r, // interest rate (per period) const double\& $\mathrm{u}, / /$ up movement const double\& d, // down movement const int\& no_periods)\{ // no steps in binomia
double Rinv $=\exp (-\mathrm{r}) ; \quad / /$ inverse of interest rate
double $u u=u^{*} u$;
double p_up $=(\exp (r)-d) /(u-d)$;
double p_down $=1.0-p_{-}$up;
vector<double $>$ prices(no_periods +1); // price of underlying
prices $[0]=S^{*}$ pow(d, no_periods); // fill in the endnodes.
for (int $\mathrm{i}=1$; $\mathrm{i}<=$ no_periods; ++i) prices $[\mathrm{i}]=\mathrm{un}^{*}$ prices $[\mathrm{i}-1$;
vector $<$ double $>$ call_values(no_periods +1); // value of corresponding call
for ($\mathrm{int} \mathrm{i}=0 ; \mathrm{i}<=$ no_periods; ++i) call_values $[\mathrm{i}]=\max (0.0$, (prices[i]-K)); // call payoffs at maturity
for (int step $=$ no_periods -1 ; step $>=0 ;--$ step) \{
for (int $\mathrm{i}=0$; $\mathrm{i}<=$ step; ++i) \{
call_values $[\mathrm{i}]=\left(\mathrm{p}_{-} \mathrm{up}^{*}\right.$ call_values $[\mathrm{i}+1]+\mathrm{p}_{\text {_ down }}{ }^{*}$ call_values $\left.[\mathrm{i}]\right) * \operatorname{Rinv}$
\};
\};
return call_values[0];
\};

C++ Code 6.3: Binomial multiperiod pricing of European call option

Let $S=100.0, K=100.0, r=0.025, u=1.05$ and $d=1 / u$.

1. Price one and two period European Call options.
```
C++ program:
void test_bin_eur_call_ud (){
    double S = 100.0; double K = 100.0; double r = 0.025;
    double u = 1.05; double d = 1/u;
    cout << " one period european call = "
    << option_price_call_european_binomial_single_period(S,K,r,u,d) << endl;
    int no_periods = 2;
    cout << " two period european call = "
            << option_price_call_european_binomial_multi_period_given_ud(S,K,r,u,d,no_periods) << endl;
};
Output from C++ program:
one period european call = 3.64342
two period european call = 5.44255
```


Chapter 7

Basic Option Pricing, the Black Scholes formula

The pricing of options and related instruments has been a major breakthrough for the use of financial theory in practical application. Since the original papers of Black and Scholes (1973) and Merton (1973), there has been a wealth of practical and theoretical applications. We will now consider the orginal Black Scholes formula for pricing options, how it is calculated and used. For the basic intuition about option pricing the reader should first read the discussion of the binomial model in the previous chapter, as that is a much better environment for understanding what is actually calculated.
An option is a derivative security, its value depends on the value, or price, of some other underlying security, called the underlying security.. Let S denote the value, or price, of this underlying security. We need to keep track of what time this price is observed at, so let S_{t} denote that the price is observed at time t. A call (put) option gives the holder the right, but not the obligation, to buy (sell) some underlying asset at a given price K, called the exercise price, on or before some given date T. If the option is a so called European option, it can only be used (exercised) at the maturity date. If the option is of the so called American type, it can be used (exercised) at any date up to and including the maturity date T. If exercised at time T, a call option provides payoff

$$
C_{T}=\max \left(0, S_{T}-K\right)
$$

and a put option provides payoff

$$
P_{T}=\max \left(0, K-S_{T}\right)
$$

The Black Scholes formulas provides analytical solutions for European put and call options, options which can only be exercised at the options maturity date. Black and Scholes showed that the additional information needed to price the option is the (continously compounded) risk free interest rate r, the variability of the underlying asset, measured by the standard deviation σ of (\log) price changes, and the time to maturity $(T-t)$ of the option, measured in years. The original formula was derived under the assumption that there are no payouts, such as stock dividends, coming from the underlying security during the life of the option. Such payouts will affection option values, as will become apparent later.

7.1 The formula

Formula 7.1 gives the exact formula for a call option, and the calculation of the same call option is shown in code 7.1

$$
c=S N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right)
$$

where

$$
d_{1}=\frac{\ln \left(\frac{S}{K}\right)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

and

$$
d_{2}=d_{1}-\sigma \sqrt{T-t}
$$

Alternatively one can calculate d_{1} and d_{2} as

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{S}{K}\right)+r(T-t)}{\sigma \sqrt{T-t}}+\frac{1}{2} \sigma \sqrt{T-t} \\
& d_{2}=\frac{\ln \left(\frac{S}{K}\right)+r(T-t)}{\sigma \sqrt{T-t}}-\frac{1}{2} \sigma \sqrt{T-t}
\end{aligned}
$$

S is the price of the underlying security, K the exercise price, r the (continously compounded) risk free interest rate, σ the standard deviation of the underlying asset, t the current date, T the maturity date, $T-t$ the time to maturity for the option and $N(\cdot)$ the cumulative normal distribution.

Formula 7.1: The Black Scholes formula

```
#include <cmath> // mathematical C library
#include <cmath> // mathematical C library
double option_price_call_black_scholes(const double& S, // spot (underlying) price
                    const double& K, // strike (exercise) price,
                    const double& r, // interest rate
                    const double& sigma, // volatility
                            const double& time) { // time to maturity
    double time_sqrt = sqrt(time);
    double d1 = (log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;
    double d2 = d1-(sigma*time_sqrt);
    return S*N(d1) - K*exp(-r*time)*N(d2);
};
```

C++ Code 7.1: Price of European call option using the Black Scholes formula

```
function c = black_scholes_call(S,K,r,sigma,time)
    time_sqrt = sqrt(time);
    d1 = (log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;
    d2 = d1-(sigma*time_sqrt);
    c = S * normal_cdf(d1) - K * exp(-r*time) * normal_cdf(d2);
    endfunction
```

MatlabCode 7.1: Price of European call option using the Black Scholes formula

Stock in company XYZ is currently trading at 50. Consider a call option on XYZ stock with an exercise price of $K=50$ and time to maturity of 6 months. The volatility of XYZ stock has been estimated to be $\sigma=30 \%$. The current risk free interest rate (with continous compounding) for six month borrowing is 10%. To calculate the price of this option we use the Black Scholes formula with inputs $S=50, K=50$, $r=0.10, \sigma=0.3$ and $(T-t)=0.5$.

```
C++ program:
void test_option_price_call_black_scholes(){
    double S = 50; double K = 50; double r = 0.10;
    double sigma = 0.30; double time=0.50;
    cout << " Black Scholes call price = ";
    cout << option_price_call_black_scholes(S, K, r, sigma, time) << endl;
};
Output from C++ program:
Black Scholes call price = 5.45325
```

```
Matlabprogram:
#PS1 = ">> ";
echo
S=100
K=100;
r=0.1;
sigma=0.1;
time=1;
c=black_scholes_call(S,K,r,sigma,time)
```

Output from Matlabprogram:

Example 7.1: Example using the Black Scholes formula

Exercise 14.

The Black Scholes price for a put option is:

$$
p=K e^{-r(T-t)} N\left(-d_{2}\right)-S N\left(-d_{1}\right)
$$

where d_{1} and d_{2} are as for the call option:

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{S}{X}\right)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& d_{2}=d_{1}-\sigma \sqrt{T-t}
\end{aligned}
$$

S is the price of the underlying secrutity, K the exercise price, r the (continously compounded) risk free interest rate, σ the standard deviation of the underlying asset, $T-t$ the time to maturity for the option and $N(\cdot)$ the cumulative normal distribution.

1. Implement this formula.

7.2 Understanding the why's of the formula

To get some understanding of the Black Scholes formula and why it works will need to delve in some detail into the mathematics underlying its derivation. It does not help that there are a number of ways to prove the Black Scholes formula, depending on the setup. As it turns out, two of these ways are important to understand for computational purposes, the original Black Scholes continous time way, and the "limit of a binomial process" way of Cox, Ross, and Rubinstein (1979).

7.2.1 The original Black Scholes analysis

The primary assumption underlying the Black Scholes analyis concerns the stochastic process governing the price of the underlying asset. The price of the underlying asset, S, is assumed to follow a geometric Brownian Motion process, conveniently written in either of the shorthand forms

$$
d S=\mu S d t+\sigma S d Z
$$

or

$$
\frac{d S}{S}=\mu d t+\sigma d Z
$$

where μ and σ are constants, and Z is Brownian motion.
Using Ito's lemma, the assumption of no arbitrage, and the ability to trade continuously, Black and Scholes showed that the price of any contingent claim written on the underlying must solve the partial differential equation (7.1).

$$
\begin{equation*}
\frac{\partial f}{\partial S} r S+\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial S^{2}} \sigma^{2} S^{2}=r f \tag{7.1}
\end{equation*}
$$

For any particular contingent claim, the terms of the claim will give a number of boundary conditions that determines the form of the pricing formula.
The pde given in equation (7.1), with the boundary condition $c_{T}=\max \left(0, S_{T}-K\right)$ was shown by Black and Scholes to have an analytical solution of functional form shown in the Black Scoles formula 7.1.

7.2.2 The limit of a binomial case

Another is to use the limit of a binomial process (Cox et al., 1979). The latter is particularly interesting, as it allows us to link the Black Scholes formula to the binomial, allowing the binomial framework to be used as an approximation.

7.2.3 The representative agent framework

A final way to show the BS formula to assume a representative agent and lognormality as was done in Rubinstein (1976).

7.3 Partial derivatives.

In trading of options, a number of partial derivatives of the option price formula is important.

7.3.1 Delta

The first derivative of the option price with respect to the price of the underlying security is called the delta of the option price. It is the derivative most people will run into, since it is important in hedging of options.

$$
\frac{\partial c}{\partial S}=N\left(d_{1}\right)
$$

Code 7.2 shows the calculation of the delta for a call option.

```
#include <cmath>
#include "normdist.h"
double option_price_delta_call_black_scholes(const double& S, // spot price
                                    const double& K, // Strike (exercise) price,
                                    const double& r, // interest rate
                                    const double& sigma, // volatility
                                    const double& time){ // time to maturity
    double time_sqrt = sqrt(time);
    double d1 = (log(S/K)+r*time)}/(\mathrm{ sigma*time_sqrt ) + 0.5*sigma*time_sqrt;
    double delta = N(d1);
    return delta;
};
```

C++ Code 7.2: Calculating the delta of the Black Scholes call option price

7.3.2 Other Derivatives

The remaining derivatives are more seldom used, but all of them are relevant. All of them are listed in formula 7.3.2.
The calculation of all of these partial derivatives for a call option is shown in code 7.3

Delta (Δ)

$$
\Delta=\frac{\partial c}{\partial S}=N\left(d_{1}\right)
$$

Gamma (Γ)

$$
\frac{\partial^{2} c}{\partial S^{2}}=\frac{n\left(d_{1}\right)}{S \sigma \sqrt{T-t}}
$$

Theta (Θ) (careful about which of these you want)

$$
\begin{aligned}
& \frac{\partial c}{\partial(T-t)}=S n\left(d_{1}\right) \frac{1}{2} \sigma \frac{1}{\sqrt{T-t}}+r K e^{-r(T-t)} N\left(d_{2}\right) \\
& \frac{\partial c}{\partial t}=-\operatorname{Sn}\left(d_{1}\right) \frac{1}{2} \sigma \frac{1}{\sqrt{T-t}}-r K e^{-r(T-t)} N\left(d_{2}\right)
\end{aligned}
$$

Vega

$$
\frac{\partial c}{\partial \sigma}=S \sqrt{T-\operatorname{t}} n\left(d_{1}\right)
$$

Rho (ρ)

$$
\frac{\partial c}{\partial r}=K(T-t) e^{-r(T-t)} N\left(d_{2}\right)
$$

S is the price of the underlying security, K the exercise price, r the (continously compounded) risk free interest rate, σ the standard deviation of the underlying asset, t the current date, T the maturity date and $T-t$ the time to maturity for the option. $n(\cdot)$ is the normal distribution function $\left(n(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}}\right)$ and $N(\cdot)$ the cumulative normal distribution $\left(N(z)=\int_{-\infty}^{z} n(t) d t\right)$.

Formula 7.2: Partial derivatives of the Black Scholes call option formula

```
#include <cmath>
#include "normdist.h"
using namespace std;
void option_price_partials_call_black_scholes( const double& S, // spot price
    const double& K, // Strike (exercise) price,
    const double& r, // interest rate
    const double& sigma, // volatility
    const double& time, // time to maturity
    double& Delta, // partial wrt S
    double& Gamma, // second prt wrt S
    double& Theta, // partial wrt time
    double& Vega, // partial wrt sigma
    double& Rho){ // partial wrt r
    double time_sqrt = sqrt(time);
    double d1 = (log(S/K)+r*time)}/(\mathrm{ sigma*time_sqrt ) + 0.5*sigma*time_sqrt;
    double d2 = d1-(sigma*time_sqrt);
    Delta = N(d1);
    Gamma = n(d1)/(S*sigma*time_sqrt);
    Theta =- (S*sigma*n(d1))/(2*time_sqrt ) - r*K*exp( -r*time)*N(d2);
    Vega = S * time_sqrt*n(d1);
    Rho = K*time*exp(-r*time)*N(d2);
};
```

C++ Code 7.3: Calculating the partial derivatives of a Black Scholes call option

Consider the same call option as in the previous example. The option matures 6 months from now, at which time the holder of the option can recive one unit of the underlying security by paying the exercise price of $K=50$. The current price of the underlying security is $S=50$. The volatility of the underlying security is given as $\sigma=30 \%$. The current risk free interest rate (with continous compounding) for six month borrowing is 10%. To calculate the partial derivatives we therefore use inputs $S=50, K=50$, $r=0.10, \sigma=0.3$ and $(T-t)=0.5$.

```
C++ program:
void test_black_scholes_partials_call(){
    cout << " Black Scholes call partial derivatives " << endl;
    double }\textrm{S}=50;\mathrm{ double K = 50; double r =0.10;
    double sigma = 0.30; double time=0.50;
    double Delta, Gamma, Theta, Vega, Rho;
    option_price_partials_call_black_scholes(S,K,r,,sigma, time,
                                    Delta, Gamma, Theta, Vega, Rho);
    cout <<" Delta = " << Delta << endl;
    cout << " Gamma = " << Gamma << endl;
    cout << " Theta = " << Theta << endl;
    cout << " Vega = " << Vega << endl;
    cout << " Rho = " << Rho << endl;
};
Output from C++ program:
    Black Scholes call partial derivatives
    Delta = 0.633737
    Gamma = 0.0354789
    Theta = -6.61473
    Vega = 13.3046
    Rho = 13.1168
```

Example 7.2: Example calculating partial derivatives using the Black Scholes formula

7.3.3 Implied Volatility.

In calculation of the option pricing formulas, in particular the Black Scholes formula, the only unknown is the standard deviation of the underlying stock. A common problem in option pricing is to find the implied volatility, given the observed price quoted in the market. For example, given c_{0}, the price of a call option, the following equation should be solved for the value of σ

$$
c_{0}=c(S, K, r, \sigma, T-t)
$$

Unfortunately, this equation has no closed form solution, which means the equation must be numerically solved to find σ. What is probably the algorithmic simplest way to solve this is to use a binomial search algorithm, which is implemented in the following. We start by bracketing the sigma by finding a high sigma that makes the BS price higher than the observed price, and then, given the bracketing interval, we search for the volatility in a systematic way. Code 7.4 shows such a calculation.

```
#include <cmath>
#include "fin_recipes.h"
double option_price_implied_volatility_call_black_scholes_bisections(const double& S,
                                    const double& K,
                                    const double& r,
                                    const double& time,
                                    const double& option_price){
    if (option_price<0.99*(S-K*exp(-time*r))) { // check for arbitrage violations.
        return 0.0; // Option price is too low if this happens
    };
    // simple binomial search for the implied volatility.
    // relies on the value of the option increasing in volatility
    const double ACCURACY = 1.0e-5; // make this smaller for higher accuracy
    const int MAX_ITERATIONS = 100;
    const double HIGH_VALUE = 1e10;
    const double ERROR = -1e40;
    // want to bracket sigma. first find a maximum sigma by finding a sigma
    // with a estimated price higher than the actual price.
    double sigma_low=1e-5;
    double sigma_high=0.3;
    double price = option_price_call_black_scholes(S,K,r,sigma_high,time);
    while (price < option_price) {
        sigma_high = 2.0 * sigma_high; // keep doubling.
        price = option_price_call_black_scholes(S,K,r,sigma_high,time);
        if (sigma_high>HIGH_VALUE) return ERROR; // panic, something wrong.
    };
    for (int i=0;i<MAX_ITERATIONS;i++){
        double sigma = (sigma_low+sigma_high)*0.5;
        price = option_price_call_black_scholes(S,K,r,sigma,time);
        double test = (price-option_price);
        if (fabs(test)<ACCURACY) { return sigma; };
        if (test < 0.0) { sigma_low = sigma; }
        else { sigma_high = sigma; }
    };
    return ERROR;
};
```

C++ Code 7.4: Calculation of implied volatility of Black Scholes using bisections
Instead of this simple bracketing, which is actually pretty fast, and will (almost) always find the solution, we can use the Newton-Raphson formula for finding the root of an equation in a single variable. The general description of this method starts with a function $f()$ for which we want to find a root.

$$
f(x)=0
$$

The function $f()$ needs to be differentiable. Given a first guess x_{0}, iterate by

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

until

$$
\left|f\left(x_{i}\right)\right|<\epsilon
$$

where ϵ is the desired accuracy. ${ }^{1}$
In our case

$$
f(x)=c_{o b s}-c_{B S}(\sigma)
$$

and, each new iteration will calculate

$$
\sigma_{i+1}=\sigma_{i}+\frac{c_{o b s}-c_{B S}\left(\sigma_{i}\right)}{-\frac{\partial c_{B S}()}{\partial \sigma}}
$$

Code 7.5 shows the calculation of implied volatility using Newton-Raphson.

```
#include "fin_recipes.h"
#include "normdist.h"
#include <cmath>
#include <iostream>
double option_price_implied_volatility_call_black_scholes_newton(const double& S,
                                    const double& K,
                                    const double& r,
                                    const double& time,
                                    const double& option_price) {
    if (option_price<0.99*(S-K*exp(-time*r))) { // check for arbitrage violations. Option price is too low if this happens
        return 0.0;
    };
    const int MAX_ITERATIONS = 100;
    const double ACCURACY = 1.0e-5;
    double t_sqrt = sqrt(time);
    double sigma = (option_price/S)/(0.398*t_sqrt); // find initial value
    for (int i=0;i<MAX_ITERATIONS; i++){
        double price = option_price_call_black_scholes(S,K,r,sigma,time);
        double diff =option_price -price;
        if (fabs(diff)<ACCURACY) return sigma;
        double d1 = (log(S/K)+r*time)/(sigma*t_sqrt ) + 0.5*sigma*t_sqrt;
        double vega =S * t_sqrt * n(d1);
        sigma = sigma + diff/vega;
    };
    return -99e10; // something screwy happened, should throw exception
};
```

C++ Code 7.5: Calculation of implied volatility of Black Scholes using Newton-Raphson

Note that to use Newton-Raphson we need the derivative of the option price. For the Black-Scholes formula this is known, and we can use this. But for pricing formulas like the binomial, where the partial derivatives are not that easy to calculate, simple bisection is the preferred algorithm.

[^2]Consider the same call option as in the previous examples. The option matures 6 months from now, at which time the holder of the option can recive one unit of the underlying security by paying the exercise price of $K=50$. The current price of the underlying security is $S=50$. The current risk free interest rate (with continous compounding) for six month borrowing is 10%. To calculate we therefore use inputs $S=50, K=50, r=0.10$ and $(T-t)=0.5$.
We are now told that the current option price is $C=2.5$. The implied volatility is the σ which, input in the Black Scholes formula with these other inputs, will produce an option price of $C=2.5$.

```
C++ program:
void test_black_scholes_implied_volatility(){
    double S = 50; double K = 50; double r = 0.10; double time=0.50;
    double C=2.5;
    cout << " Black Scholes implied volatility using Newton search = ";
    cout << option_price_implied_volatility_call_black_scholes_newton(S,K,r,time,C) << endl;
    cout << " Black Scholes implied volatility using bisections = ";
    cout << option_price_implied_volatility_call_black_scholes_bisections(S,K,r,time,C) << endl;
};
Output from C++ program:
    Black Scholes implied volatility using Newton search = 0.0500427
    Black Scholes implied volatility using bisections = 0.0500419
```

Example 7.3: Example finding implied volatility using the Black Scholes formula

Chapter 8

Warrants

A warrant is an option-like security on equity, but it is issued by the same company which has issued the equity, and when a warrant is exercised, a new stock is issued. This new stock is issued at a the warrant strike price, which is lower than the current stock price (If it wasn't the warrant would not be exercised.) Since the new stock is a a fractional right to all cashflows, this stock issue waters out, or dilutes, the equity in a company. The degree of dilution is a function of how many warrants are issued.

8.1 Warrant value in terms of assets

Let K be the strike price, n the number of shares outstanding and m the number of warrants issues. Assume each warrant is for 1 new share, and let A_{t} be the current asset value of firm. Suppose all warrants are exercised simultaneously. Then the assets of the firm increase by the number of warrants times the strike price of the warrant.

$$
A_{t}+m K
$$

but this new asset value is spread over more shares, since each exercised warrant is now an equity. The assets of the firm is spread over all shares, hence each new share is worth:

$$
\frac{A_{t}+m K}{m+n}
$$

making each exercised warrant worth:

$$
\frac{A_{t}+m K}{m+n}-K=\frac{n}{m+n}\left(\frac{A_{t}}{n}-K\right)
$$

If we knew the current value of assets in the company, we could value the warrant in two steps:

1. Value the option using the Black Scholes formula and $\frac{A_{t}}{n}$ as the current stock price.
2. Multiply the resulting call price with $\frac{n}{m+n}$.

If we let W_{t} be the warrant value, the above arguments are summarized as:

$$
W_{t}=\frac{n}{n+m} C_{B S}\left(\frac{A}{n}, K, \sigma, r,(T-t)\right)
$$

where $C_{B S}(\cdot)$ is the Black Scholes formula.

8.2 Valuing warrants when observing the stock value

However, one does not necessarily observe the asset value of the firm. Typically one only observes the equity value of the firm. If we let S_{t} be the current stock price, the asset value is really:

$$
A_{t}=n S_{t}+m W_{t}
$$

Using the stock price, one would value the warrant as

$$
W_{t}=\frac{n}{n+m} C_{B S}\left(\frac{n S_{t}+m W_{t}}{n}, K, \sigma, r,(T-t)\right)
$$

or

$$
W_{t}=\frac{n}{n+m} C_{B S}\left(S_{t}+\frac{m}{n} W_{t}, K, \sigma, r,(T-t)\right)
$$

Note that this gives the value of W_{t} as a function of W_{t}. One need to solve this equation numerically to find W_{t}.
The numerical solution for W_{t} is done using the Newton-Rhapson method. Let

$$
g\left(W_{t}\right)=W_{t}-\frac{n}{n+m} C_{B S}\left(S_{t}+\frac{m}{n} W_{t}, K, \sigma, r,(T-t)\right)
$$

Starting with an initial guess for the warrant value W_{t}^{o}, the Newton-Rhapson method is that one iterates as follows

$$
W_{t}^{i}=W_{t}^{i-1}-\frac{g\left(W_{t}^{i-1}\right)}{g^{\prime}\left(W_{t}^{i-1}\right)}
$$

where i signifies iteration i, until the criterion function $g\left(W_{t}^{i-1}\right)$ is below some given accuracy ϵ. In this case

$$
g^{\prime}\left(W_{t}\right)=1-\frac{m}{m+n} N\left(d_{1}\right)
$$

where

$$
d_{1}=\frac{\ln \left(\frac{S_{t}+\frac{m}{n} W_{t}}{K}\right)+\left(r+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

An obvious starting value is to set calculate the Black Scholes value using the current stock price, and multiplying it with $\frac{m}{m+n}$.
Code 8.1 implements this calculation.

```
\#include "fin_recipes.h"
\#include "normdist.h"
\#include <cmath>
double warrant_price_adjusted_black_scholes(const double\& S, // current stock price
                                    const double\& K, // strike price
                                    const double\& \(\mathrm{r}, / /\) interest rate
                                    const double\& sigma, // volatility
                                    const double\& time, // time to maturity
                                    const double\& \(\mathrm{m}, / /\) number of warrants outstanding
                                    const double\& n)\{ // number of shares outstanding
    const double epsilon \(=0.00001\);
    double time_sqrt \(=\) sqrt(time);
        double \(\mathrm{w}=(\mathrm{n} /(\mathrm{n}+\mathrm{m}))^{*}\) option_price_call_black_scholes(S,K,r,sigma,time);
    double \(\mathrm{g}=\mathrm{w}-(\mathrm{n} /(\mathrm{n}+\mathrm{m}))^{*}\) option_price_call_black_scholes \(\left(\mathrm{S}+(\mathrm{m} / \mathrm{n})^{*} \mathrm{w}, \mathrm{K}, \mathrm{r}\right.\), sigma,time \()\);
    while (fabs(g)>epsilon) \{
        double \(\mathrm{d} 1=\left(\log ((\mathrm{S}+(\mathrm{m} / \mathrm{n})) / \mathrm{K})+\mathrm{r}^{*}\right.\) time \() /(\) sigma*time_sqrt \()+0.5{ }^{*}\) sigma*time_sqrt;
        double gprime \(=1-(\mathrm{m} / \mathrm{n}) * \mathrm{~N}(\mathrm{~d} 1)\);
        \(\mathrm{w}=\mathrm{w}-\mathrm{g} /\) gprime;
        \(\mathrm{g}=\mathrm{w}-(\mathrm{n} /(\mathrm{n}+\mathrm{m})){ }^{*}\) option_price_call_black_scholes(S+(m/n)*w,K,r,sigma,time);
    \};
    return w ;
\};
```

C++ Code 8.1: Adjusted Black Scholes value for a Warrant

8.3 Readings

McDonald (2006) and Hull (2006) are general references. A problem with warrants is that exercise of all warrants simultaneously is not necessarily optimal.

A stock is currently priced at $S=48$. Consider warrants on the same company with exercise price $K=40$ and time to maturity of six months. The company has $n=10000$ shares outstanding, and has issued $m=1000$ warrants. The current (continously compounded) risk free interest rate is 8%. Determine the current warrant price.

```
C++ program:
void test_warrant_price_adjusted_black_scholes(){
    double S = 48; double K = 40; double r = 0.08; double sigma = 0.30;
    double time = 0.5; double m = 1000; double n = 10000;
    double w = warrant_price_adjusted_black_scholes(S,K,r,sigma, time, m, n);
    cout << " warrant price = " << w << endl
};
Output from C++ program:
    warrant price = 10.142
```

Example 8.1: Example warrant pricing

Press et al. (1992) discusses the Newton-Rhapson method for root finding.

Chapter 9

Extending the Black Scholes formula

9.1 Adjusting for payouts of the underlying.

For options on other financial instruments than stocks, we have to allow for the fact that the underlying may have payouts during the life of the option. For example, in working with commodity options, there is often some storage costs if one wanted to hedge the option by buying the underlying.

9.1.1 Continous Payouts from underlying.

The simplest case is when the payouts are done continuously. To value an European option, a simple adjustment to the Black Scholes formula is all that is needed. Let q be the continuous payout of the underlying commodity.
Call and put prices for European options are then given by formula 9.1, which are implemented in code 9.1.

$$
c=S e^{-q(T-t)} N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right)
$$

where

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{S}{K}\right)+\left(r-q+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& d_{2}=d_{1}-\sigma \sqrt{T-t}
\end{aligned}
$$

S is the price of the underlying secrutity, K the exercise price, r the risk free interest rate, q the (continous) payout and σ the standard deviation of the underlying asset, t the current date, T the maturity date, $T-t$ the time to maturity for the option and $N(\cdot)$ the cumulative normal distribution.
Formula 9.1: Analytical prices for European call option on underlying security having a payout of q

```
#include <cmath> // mathematical library
#include "normdist.h" // this defines the normal distribution
using namespace std;
double option_price_european_call_payout( const double& S, // spot price
                    const double& X, // Strike (exercise) price,
                    const double& r, // interest rate
                    const double& q, // yield on underlying
                            const double& sigma, // volatility
                            const double& time) {// time to maturity
    double sigma_sqr = pow(sigma,2);
    double time_sqrt = sqrt(time);
    double d1 = (log(S/X) + (r-q + 0.5*sigma_sqr)*time)/(sigma*time_sqrt);
    double d2 = d1-(sigma*time_sqrt)
    double call_price = S * exp(-q*time)* N(d1) - X * exp(-r*time) * N(d2);
    return call_price;
};
```

C++ Code 9.1: Option price, continous payout from underlying

Exercise 15.

The price of a put on anderlying security with a continous payout of q is:

$$
p=K e^{-r(T-t)} N\left(-d_{2}\right)-S e^{-q(T-t)} N\left(-d_{1}\right)
$$

1. Implement this formula.

9.1.2 Dividends.

A special case of payouts from the underlying security is stock options when the stock pays dividends. When the stock pays dividends, the pricing formula is adjusted, because the dividend changes the value of the underlying.
The case of continuous dividends is easiest to deal with. It corresponds to the continuous payouts we have looked at previously. The problem is the fact that most dividends are paid at discrete dates.

European Options on dividend-paying stock.

To adjust the price of an European option for known dividends, we merely subtract the present value of the dividends from the current price of the underlying asset in calculating the Black Scholes value.

```
#include <cmath> // mathematical library
#include < vector>
#include "fin_recipes.h" // define the black scholes price
double option_price_european_call_dividends( const double& S,
                    const double& K,
                    const double& r,
                    const double& sigma,
                            const double& time_to_maturity,
                            const vector <double}>&&\mathrm{ dividend_times,
                            const vector <double }>&&\mathrm{ dividend_amounts ) {
    double adjusted_S = S;
    for (int i=0;i<dividend_times.size();i++) {
        if (dividend_times[i]<=time_to_maturity){
            adjusted_S -= dividend_amounts[i] * }\operatorname{exp(-r*}\mathrm{ dividend_times[i]);
        };
    };
    return option_price_call_black_scholes(adjusted_S,K,r,sigma,time_to_maturity);
};
```

C++ Code 9.2: European option price, dividend paying stock

```
C++ program:
void test_black_scholes_with_dividends(){
    double S = 100.0; double K = 100.0;
    double r =0.1; double sigma =0.25;
    double time=1.0;
    double dividend_yield=0.05;
    vector<double> dividend_times; vector<double> dividend_amounts;
    dividend_times.push_back(0.25); dividend_amounts.push_back(2.5);
    dividend_times.push_back(0.75); dividend_amounts.push_back(2.5);
    cout << " european stock call option with contininous dividend = "
        << option_price_european_call_payout(S,K,r,dividend_yield,sigma,time) << endl;
    cout << " european stock call option with discrete dividend = "
        << option_price_european_call_dividends(S,K,r,sigma,time,dividend_times,dividend_amounts) << endl;
};
Output from C++ program:
    european stock call option with contininous dividend = 11.7344
    european stock call option with discrete dividend = 11.8094
```


9.2 American options.

American options are much harder to deal with than European ones. The problem is that it may be optimal to use (exercise) the option before the final expiry date. This optimal exercise policy will affect the value of the option, and the exercise policy needs to be known when solving the pde. There is therefore no general analytical solutions for American call and put options. There is some special cases. For American call options on assets that do not have any payouts, the American call price is the same as the European one, since the optimal exercise policy is to not exercise. For American Put is this not the case, it may pay to exercise them early. When the underlying asset has payouts, it may also pay to exercise the option early. There is one known known analytical price for American call options, which is the case of a call on a stock that pays a known dividend once during the life of the option, which is discussed next. In all other cases the American price has to be approximated using one of the techniques discussed in later chapters: Binomial approximation, numerical solution of the partial differential equation, or another numerical approximation.

9.2.1 Exact american call formula when stock is paying one dividend.

When a stock pays dividend, a call option on the stock may be optimally exercised just before the stock goes ex-dividend. While the general dividend problem is usually approximated somehow, for the special case of one dividend payment during the life of an option an analytical solution is available, due to Roll-Geske-Whaley.
If we let S be the stock price, K the exercise price, D_{1} the amount of dividend paid, t_{1} the time of dividend payment, T the maturity date of option, we denote the time to dividend payment $\tau_{1}=T-t_{1}$ and the time to maturity $\tau=T-t$.
A first check of early exercise is:

$$
D_{1} \leq K\left(1-e^{-r\left(T-t_{1}\right)}\right)
$$

If this inequality is fulfilled, early exercise is not optimal, and the value of the option is

$$
c\left(S-e^{-r\left(t_{1}-t\right)} D_{1}, K, r, \sigma,(T-t)\right)
$$

where $c(\cdot)$ is the regular Black Scholes formula.
If the inequality is not fulfilled, one performs the calculation shown in formula 9.2 and implemented in code 9.3

Exercise 16.

The Black approximation to the price of an call option paying a fixed dividend is an approximation to the value of the call. Suppose the dividend is paid as some date t_{1} before the maturity date of the option T. Blacks approximation calculates the value of two European options using the Black Scholes formula. One with expiry date equal to the ex dividend date of the options. Another with expiry date equal to the option expiry, but the current price of the underlying security is adjusted down by the amount of the dividend.

1. Implement Black's approximation.

$$
C=\left(S-D_{1} e^{-r\left(t_{1}-t\right)}\right)\left(N\left(b_{1}\right)+N\left(a_{1},-b_{1}, \rho\right)\right)+K e^{-r(T-t))} N\left(a_{2},-b_{2}, \rho\right)-\left(K-D_{1}\right) e^{-r\left(t_{1}-t\right)} N\left(b_{2}\right)
$$

where

$$
\begin{aligned}
& \rho=-\sqrt{\frac{\left(t_{1}-t\right.}{T-t}} \\
& a_{1}=\frac{\ln \left(\frac{S-D_{1} e^{-q\left(\tau_{1}\right.}}{K}\right)+\left(r+\frac{1}{2} \sigma^{2}\right) \tau}{\sigma \sqrt{\tau}} \\
& a_{2}=a_{1}-\sigma \sqrt{T-t} \\
& b_{1}=\frac{\ln \left(\frac{S-D_{1} e^{-r\left(t_{1}-t\right)}}{S}\right)+\left(r+\frac{1}{2} \sigma^{2}\right)\left(t_{1}-t\right)}{\sigma \sqrt{\left(t_{1}-t\right)}} \\
& b_{2}=b_{1}-\sigma \sqrt{T-t}
\end{aligned}
$$

and \bar{S} solves

$$
c\left(\bar{S}, t_{1}\right)=\bar{S}+D_{1}-K
$$

S is the price of the underlying secrutity, K the exercise price, r the risk free interest rate, D_{1} is the dividend amount and σ the standard deviation of the underlying asset, t the current date, T the maturity date, $T-t$ the time to maturity for the option and $N(\cdot)$ the cumulative normal distribution. $N()$ with one argument is the univariate normal cumulative distribution. $N()$ with three arguments is the bivariate normal distribution with the correlation between the two normals given as the third arguement.

Formula 9.2: Roll-Geske-Whaley price of american call option paying one fixed dividend

```
#include <cmath>
#include "normdist.h" // define the normal distribution functions
#include "fin_recipes.h" // the regular black sholes formula
double option_price_american_call_one_dividend(const double& S,
                    const double& K,
                    const double& r,
                    const double& sigma,
                    const double& tau
                    const double& D1,
                    const double& tau1){
    if (D1<= K* (1.0-exp(-r*(tau-tau1)))) // check for no exercise
        return option_price_call_black_scholes(S-exp(-r*tau1)*D1,K,r,sigma,tau);
    const double ACCURACY = 1e-6; // decrease this for more accuracy
    double sigma_sqr = sigma*sigma;
    double tau_sqrt = sqrt(tau);
    double tau1_sqrt = sqrt(tau1);
    double rho = - sqrt(tau1/tau);
    double S_bar = 0; // first find the S_bar that solves c=S_bar+D1-K
    double S_low=0; // the simplest: binomial search
    double S_high=S; // start by finding a very high S above S_bar
    double c = option_price_call_black_scholes(S_high,K,r,sigma,tau-tau1);
    double test = c-S_high-D1+K;
    while ( (test>0.0) && (S_high<=1e10) ) {
        S_high *= 2.0;
        c = option_price_call_black_scholes(S_high,K,r,sigma,tau-tau1);
        test = c-S_high-D1+K;
    };
    if (S_high>1e10) {// early exercise never optimal, find BS value
        return option_price_call_black_scholes(S-D1*exp(-r*tau1),K,r,sigma,tau);
    };
    S_bar = 0.5 * S_high; // now find S_bar that solves c=S_bar- D+K
    c = option_price_call_black_scholes(S_bar,K,r,sigma,tau-tau1);
    test = c-S_bar-D1+K;
    while ( (fabs(test)>ACCURACY) && ((S_high-S_low)>ACCURACY) ) {
        if (test<0.0) { S_high = S_bar; }
        else { S_low = S_bar; };
        S_bar = 0.5 * (S_high + S_low);
        c = option_price_call_black_scholes(S_bar,K,r,sigma,tau-tau1);
        test = c-S_bar-D1+K;
    };
    double a1 = (log((S-D1*exp(-r*tau1))/K) +( r+0.5*sigma_sqr)*tau) / (sigma*tau_sqrt);
    double a2 = a1 - sigma*tau_sqrt;
    double b1 = (log((S-D1*exp(-r*tau1))/S_bar)+(r+0.5*sigma_sqr)*tau1)/(sigma*tau1_sqrt);
    double b2 = b1 - sigma * tau1_sqrt;
    double C = (S-D1*exp(-r*tau1)) * N(b1) + (S-D1*exp(-r*tau1)) * N(a1,-b1,rho)
        - (K* exp(-r*tau))*N(a2,-b2,rho) - (K-D1)*exp(-r*tau1)*N(b2);
    return C;
};
```

C++ Code 9.3: Option price, Roll-Geske-Whaley call formula for dividend paying stock

```
C++ program:
void test_rgw_price_am_call_div(){
    double S = 100.0; double K = 100.0;
    double r =0.1; double sigma =0.25;
    double tau = 1.0; double tau1 = 0.5;
    double D1 = 10.0
    cout << " american call price with one dividend = "
        << option_price_american_call_one_dividend(S,K,r,sigma,tau,D1, tau1)<<< endl;
};
Output from C++ program:
    american call price with one dividend = 10.0166
```

Example 9.1: Example of pricing of option on stock paying one dividend during the life of the option

9.3 Options on futures

9.3.1 Black's model

For an European option written on a futures contract, we use an adjustment of the Black Scholes solution, which was developed in Black (1976). Essentially we replace S_{0} with $e^{-r(T-t) r} F$ in the Black Scholes formula, and get the formula shown in 9.3 and implemented in code 9.4.

$$
c=e^{-r(T-t)}\left(F N\left(d_{1}\right)-K N\left(d_{2}\right)\right)
$$

where

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{F}{K}\right)+\frac{1}{2} \sigma^{2}(T-t)}{\sigma \sqrt{T-t}} \\
& d_{2}=d_{1}-\sigma \sqrt{T-t}
\end{aligned}
$$

F is the futures price, K is the exercise price, r the risk free interest rate, σ the volatility of the futures price, and $T-t$ is the time to maturity of the option (in years).
Formula 9.3: Blacks formula for the price of an European Call option with a futures contract as the underlying security

```
#include <cmath> // mathematics library
#include "normdist.h" // normal distribution
using namespace std;
double futures_option_price_call_european_black( const double& F, // futures price
                                    const double& K, // exercise price
                                    const double& r, // interest rate
                                    const double& sigma, // volatility
                                    const double& time){// time to maturity
    double sigma_sqr = sigma*sigma;
    double time_sqrt = sqrt(time);
    double d1 = (log (F/K) + 0.5 * sigma_sqr * time) / (sigma * time_sqrt);
    double d2 = d1 - sigma * time_sqrt;
    return exp(-r*time)*(F*N(d1) - K * N(d2));
};
```

C++ Code 9.4: Price of European Call option on Futures contract

```
C++ program:
void test_futures_option_price_black(){
    double F = 50.0; double K = 45.0;
    double r =0.08; double sigma =0.2;
    double time=0.5;
    cout << " european futures call option = "
            << futures_option_price_put_european_black(F,K,r,_sigma,time) << endl;
};
Output from C++ program:
    european futures call option = 0.851476
```

Example 9.2: Pricing of Futures option using the Black formula

Exercise 17.

The Black formula for a put option on a futures contract is

$$
p=e^{-r(T-t)}\left(K N\left(-d_{2}\right)-F N\left(-d_{1}\right)\right)
$$

where the varibles are as defined for the call option.

1. Implement the put option price.

9.4 Foreign Currency Options

Another relatively simple adjustment of the Black Scholes formula occurs when the underlying security is a currency exchange rate (spot rate). In this case one adjusts the Black-Scholes equation for the interest-rate differential.

Let S be the spot exchange rate, and now let r be the domestic interest rate and r_{f} the foreign interest rate. σ is then the volatility of changes in the exchange rate. The calculation of the price of an European call option is then shown in formula 9.4 and implented in code 9.5 .

$$
c=S e^{-r_{f}(T-t)} N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right)
$$

where

$$
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{S}{K}\right)+\left(r-r_{f}+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& d_{2}=d_{1}-\sigma \sqrt{T-t}
\end{aligned}
$$

S is the spot exchange rate and K the exercise price. r is the domestic interest rate and r_{f} the foreign interest rate. σ is the volatility of changes in the exchange rate. $T-t$ is the time to maturity for the option.

Formula 9.4: European currency call

```
#include <cmath>
#include "normdist.h" // define the normal distribution function
double currency_option_price_call_european( const double& S, // exchange_rate,
    const double& X, // exercise,
    const double& r, // r_domestic,
    const double& r_f, // r_foreign,
    const double& sigma, // volatility,
    const double& time){ // time to maturity
    double sigma_sqr = sigma*sigma;
    double time_sqrt = sqrt(time);
    double d1 = (log(S/X) + (r-r_f+(0.5*sigma_sqr)) * time)/(sigma*time_sqrt)
    double d2 = d1 - sigma * time_sqrt;
    return S * exp(-r_f*time)* N(d1) - X * exp(-r*time) * N(d2);
};
```

C++ Code 9.5: European Futures Call option on currency

```
C++ program:
void test_currency_option_european_call(){
    double S = 50.0; double K = 52.0;
    double r = 0.08; double rf=0.05;
    double sigma = 0.2; double time=0.5;
    cout << " european currency call option = "
            << currency_option_price_call_european(S,K,r,rf,sigma,time) << endl;
};
Output from C++ program:
    european currency call option = 2.22556
```

Example 9.3: Pricing a foreign currency call option

Exercise 18.

The price for an european put for a currency option is

$$
p=K e^{-r(T-t)} N\left(-d_{2}\right)-S e^{-r_{f}(T-t)} N\left(-d_{1}\right)
$$

1. Implement this formula.

9.5 Perpetual puts and calls

A perpetal option is one with no maturity date, it is inifinitely lived. Of course, only American perpetual options make any sense, European perpetual options would probably be hard to sell. ${ }^{1}$ For both puts and calls analytical formulas has been developed. We consider the price of an American call, and discuss the put in an exercise. Formula 9.5 gives the analytical solution.

$$
C^{p}=\frac{K}{h_{1}-1}\left(\frac{h_{1}-1}{h_{1}} \frac{S}{K}\right)^{h_{1}}
$$

where

$$
h_{1}=\frac{1}{2}-\frac{r-q}{\sigma^{2}}+\sqrt{\left(\frac{r-q}{\sigma^{2}}-\frac{1}{2}\right)^{2}+\frac{2 r}{\sigma^{2}}}
$$

S is the current price of the underlying security, K is the exercise price, r is the risk free interest rate, q is the dividend yield and σ is the volatility of the underlying asset.

Formula 9.5: Price for a perpetual call option

```
#include <cmath>
using namespace std;
double option_price_american_perpetual_call(const double& S,
    const double& K,
    const double& r,
    const double& q,
    const double& sigma){
    double sigma_sqr=pow(sigma,2);
    double h1 = 0.5- ((r-q)/sigma_sqr);
    h1 += sqrt(pow(((r-q)/sigma_sqr-0.5),2)+2.0*r/sigma_sqr);
    double pric=(K/(h1-1.0))*pow(((h1-1.0)/h1)*(S/K),h1);
    return pric;
};
```

C++ Code 9.6: Price for an american perpetual call option

```
C++ program:
void test_option_price_perpetual_american_call(){
    double }\textrm{S}=50.0\mathrm{ ; double }\textrm{K}=40.0\mathrm{ ;
    double r=0.05; double q=0.02;
    double sigma=0.05;
    double price = option_price_american_perpetual_call(S,K,r,q,sigma);
    cout << " perpetual call price = " << price << endl;
};
Output from C++ program:
    perpetual call price = 19.4767
```

Example 9.4: Example of pricing of perpetual call

Exercise 19.

The price for a perpetual american put is

$$
P^{p}=\frac{K}{1-h_{2}}\left(\frac{h_{2}-1}{h_{2}} \frac{S}{K}\right)^{h_{2}}
$$

[^3]where
$$
h_{2}=\frac{1}{2}-\frac{r-q}{\sigma^{2}}-\sqrt{\left(\frac{r-q}{\sigma^{2}}-\frac{1}{2}\right)^{2}+\frac{2 r}{\sigma^{2}}}
$$

1. Implement the calculation of this formula.

9.6 Readings

Hull (2006) and McDonald (2006) are general references. A first formulation of an analytical call price with dividends was in Roll (1977b). This had some errors, that were partially corrected in Geske (1979), before Whaley (1981) gave a final, correct formula. See Hull (2006) for a textbook summary. Black (1976) is the original development of the futures option. The original formulations of European foreign currency option prices are in ? and ?. The price of a perpetual put was first shown in Merton (1973). For a perpetual call see McDonald and Siegel (1986). The notation for perpetual puts and calls follows the summary in (McDonald, 2006, pg. 393).

Chapter 10

Option pricing with binomial approximations

10.1 Introduction

We have shown binomial calculations given an up and down movement in chapter 6 . However, binomial option pricing can also be viewed as an approximation to a continuous time distribution by judicious choice of the constants u and d. To do so one has to ask: Is it possible to find a parametrization (choice of u and d) of a binomial process

which has the same time series properties as a (continous time) process with the same mean and volatility? There is actually any number of ways of constructing this, hence one uses one degree of freedom on imposing that the nodes reconnect, by imposing $u=\frac{1}{d}$.
To value an option using this approach, we specify the number n of periods to split the time to maturity ($T-t$) into, and then calculate the option using a binomial tree with that number of steps.
Given S, X, r, σ, T and the number of periods n, calculate

$$
\begin{aligned}
& \Delta t=\frac{T-t}{n} \\
& u=e^{\sigma \sqrt{\Delta t}} \\
& d=e^{-\sigma \sqrt{\Delta t}}
\end{aligned}
$$

We also redefine the "risk neutral probabilities"

$$
\begin{aligned}
& R=e^{r \Delta t} \\
& q=\frac{R-d}{u-d}
\end{aligned}
$$

To find the option price, will "roll backwards:" At node t, calculate the call price as a function of the two possible outcomes at time $t+1$. For example, if there is one step,

find the call price at time 0 as

$$
C_{0}=e^{-r}\left(q C_{u}+(1-q) C_{d}\right)
$$

With more periods one will "roll backwards" as discussed in chapter 6

10.2 Pricing of options in the Black Scholes setting

Consider options on underlying securities not paying dividend.

10.2.1 European Options

For European options, binomial trees are not that much used, since the Black Scholes model will give the correct answer, but it is useful to see the construction of the binomial tree without the checks for early exercise, which is the American case.
The computer algorithm for a binomial in the following merits some comments. There is only one vector of call prices, and one may think one needs two, one at time t and another at time $t+1$. (Try to write down the way you would solve it before looking at the algorithm below.) But by using the fact that the branches reconnect, it is possible to get away with the algorithm below, using one less array. You may want to check how this works. It is also a useful way to make sure one understands binomial option pricing.

10.2.2 American Options

An American option differs from an European option by the exercise possibility. An American option can be exercised at any time up to the maturity date, unlike the European option, which can only be exercised at maturity. In general, there is unfortunately no analytical solution to the American option problem, but in some cases it can be found. For example, for an American call option on non-dividend paying stock, the American price is the same as the European call.
It is in the case of American options, allowing for the possibility of early exercise, that binomial approximations are useful. At each node we calculate the value of the option as a function of the next periods prices, and then check for the value exercising of exercising the option now
Code 10.2 illustrates the calculation of the price of an American call. Actually, for this particular case, the american price will equal the european.

```
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
double option_price_call_european_binomial( const double& S, // spot price
                                    const double& X, // exercice price
                                    const double& r, // interest rate
                                    const double& sigma, // volatility
                                    const double& t, // time to maturity
                                    const int& steps){ // no steps in binomial tree
    double R = exp(r*(t/steps)); // interest rate for each step
    double Rinv = 1.0/R; // inverse of interest rate
    double u = exp(sigma*sqrt(t/steps)); // up movement
    double uu = u*u;
    double d = 1.0/u;
    double p_up = (R-d)/(u-d);
    double p_down = 1.0-p_up;
    vector<double> prices(steps+1); // price of underlying
    prices[0] = S*pow(d, steps); // fill in the endnodes.
    for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i-1];
    vector<double> call_values(steps+1); // value of corresponding call
    for (int }\textrm{i}=0;\textrm{i}<=\mathrm{ steps; ++i) call_values[i] = max(0.0, (prices[i]-X)); // call payoffs at maturity
    for (int step=steps-1; step>=0; --step) {
        for (int i=0; i<=step; ++i) {
            call_values[i] = (p_up*call_values[i+1]+p_down*call_values[i])*Rinv
        };
    };
    return call_values[0];
};
```

C++ Code 10.1: Option price for binomial european

```
#include <cmath>
// standard mathematical library
#nclude <algorithm>
#include <vector>
using namespace std;
double option_price_call_american_binomial( const double& S, // spot price
                    const double& X, // exercice price
const double& r, // interest rate
const double& sigma, // volatility
const double& t, // time to maturity
const int& steps) { // no steps in binomial tree
    double R = exp(r*(t/steps)); // interest rate for each step
    double Rinv = 1.0/R; // inverse of interest rate
    double u = exp(sigma*sqrt(t/steps)); // up movement
    double d = 1.0/u;
    double p_up = (R-d)/(u-d)
    double p_down = 1.0-p_up;
    vector<double> prices(steps+1); // price of underlying
    prices[0] = S*pow(d, steps); // fill in the endnodes.
    double uu = u*u;
    for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i-1];
    vector<double> call_values(steps+1); // value of corresponding call
    for (int i=0; i<=steps; ++i) call_values[i] = max(0.0, (prices[i]-X)); // call payoffs at maturity
    for (int step=steps-1; step>=0; --step) {
        for (int i=0; i<=step; ++i) {
        call_values[i] = (p_up*call_values[i+1]+p_down*call_values[i])*Rinv;
        prices[i] = d*prices[i+1];
        call_values[i] = max(call_values[i],prices[i]-X); // check for exercise
    };
    };
    return call_values[0];
};
```

C++ Code 10.2: Binomial option price american opstion

```
C++ program:
void test_binomial_approximations_option_pricing(){
    double }\textrm{S}=100.0;\mathrm{ double }\textrm{K}=100.0
    double r = 0.1; double sigma = 0.25;
    double time=1.0;
    int no_steps = 100;
    cout << " european call = "
            << option_price_call_european_binomial(S,K,r,sigma,time,no_steps)
            << endl;
        cout << " american call = "
            << option_price_call_american_binomial(S,K,r,sigma,time,no_steps)
            << endl;
};
Output from C++ program:
    european call = 14.9505
    american call = 14.9505
```

Example 10.1: Option pricing using binomial approximations

10.2.3 Estimating partials.

It is always necessary to calculate the partial derivatives as well as the option price.
The binomial methods gives us ways to approximate these as well. How to find them in the binomial case are described in Hull (2006). The code below is for the non-dividend case.

Delta , the derivative of the option price with respect to the underlying.

```
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
double option_price_delta_american_call_binomial(const double& S,
                    const double& X,
                    const double& r,
                    const double& sigma,
                    const double& t,
                            const int& no_steps){ // steps in binomial
```

```
    double \(R=\exp \left(\mathrm{r}^{*}(\mathrm{t} /\right.\) no_steps \(\left.)\right)\);
```

 double \(R=\exp \left(\mathrm{r}^{*}(\mathrm{t} /\right.\) no_steps \(\left.)\right)\);
 double Rinv \(=1.0 / \mathrm{R}\);
 double Rinv \(=1.0 / \mathrm{R}\);
 double \(u=\exp (\) sigma*sqrt(t/no_steps) \()\);
 double \(u=\exp (\) sigma*sqrt(t/no_steps) \()\);
 double \(\mathrm{d}=1.0 / \mathrm{u}\);
 double \(\mathrm{d}=1.0 / \mathrm{u}\);
 double \(u u=u^{*} u\);
 double \(u u=u^{*} u\);
 double \(\mathrm{pUp}=(\mathrm{R}-\mathrm{d}) /(\mathrm{u}-\mathrm{d})\);
 double \(\mathrm{pUp}=(\mathrm{R}-\mathrm{d}) /(\mathrm{u}-\mathrm{d})\);
 double pDown \(=1.0-\mathrm{pUp}\);
 double pDown \(=1.0-\mathrm{pUp}\);
 vector \(<\) double \(>\) prices (no_steps +1);
 vector \(<\) double \(>\) prices (no_steps +1);
 prices \([0]=S^{*}\) pow(d, no_steps);
 prices \([0]=S^{*}\) pow(d, no_steps);
 for (int \(\mathrm{i}=1 ; \mathrm{i}<=\) no_steps; ++i) prices \([\mathrm{i}]=\mathrm{uu} * \operatorname{prices}[\mathrm{i}-1]\);
 for (int \(\mathrm{i}=1 ; \mathrm{i}<=\) no_steps; ++i) prices \([\mathrm{i}]=\mathrm{uu} * \operatorname{prices}[\mathrm{i}-1]\);
 vector \(<\) double \(>\) call_values (no_steps +1);
 vector \(<\) double \(>\) call_values (no_steps +1);
 for (int \(\mathrm{i}=0 ; \mathrm{i}<=\) no_steps \(;++\mathrm{i})\) call_values \([\mathrm{i}]=\max (0.0,(\operatorname{prices}[\mathrm{i}]-\mathrm{X})\));
 for (int \(\mathrm{i}=0 ; \mathrm{i}<=\) no_steps \(;++\mathrm{i})\) call_values \([\mathrm{i}]=\max (0.0,(\operatorname{prices}[\mathrm{i}]-\mathrm{X})\));
 for (int CurrStep=no_steps -1 ; CurrStep \(>=1\); - CurrStep) \{
 for (int CurrStep=no_steps -1 ; CurrStep \(>=1\); - CurrStep) \{
 for (int \(i=0 ; i<=\) CurrStep; \(++i\)) \{
 for (int \(i=0 ; i<=\) CurrStep; \(++i\)) \{
 prices \([i]=d^{*}\) prices \([i+1]\);
 prices \([i]=d^{*}\) prices \([i+1]\);
 call_values \([\mathrm{i}]=\left(\mathrm{pDown}{ }^{*}\right.\) call_values \([\mathrm{i}]+\mathrm{pUp} *\) call_values \(\left.[\mathrm{i}+1]\right) *\) Rinv;
 call_values \([\mathrm{i}]=\left(\mathrm{pDown}{ }^{*}\right.\) call_values \([\mathrm{i}]+\mathrm{pUp} *\) call_values \(\left.[\mathrm{i}+1]\right) *\) Rinv;
 call_values \([\mathrm{i}]=\max (\) call_values[i], prices[i]-X); // check for exercise
 call_values \([\mathrm{i}]=\max (\) call_values[i], prices[i]-X); // check for exercise
 \};
 \};
 \};
 \};
 double delta \(=(\) call_values \([1]-\) call_values[0] \() /\left(\mathrm{S}^{*} \mathrm{u}-\mathrm{S}^{*} \mathrm{~d}\right)\);
 double delta \(=(\) call_values \([1]-\) call_values[0] \() /\left(\mathrm{S}^{*} \mathrm{u}-\mathrm{S}^{*} \mathrm{~d}\right)\);
 return delta;
 return delta;
 };

```

C++ Code 10.3: Delta

\section*{Other hedge parameters.}
```

\#include <cmath>
\#include <algorithm>
\#include "fin_recipes.h"
void option_price_partials_american_call_binomial(const double\& S, // spot price
const double\& X, // Exercise price,
const double\& r, // interest rate
const double\& sigma, // volatility
const double\& time, // time to maturity
const int\& no_steps, // steps in binomial
double\& delta, // partial wrt S
double\& gamma, // second prt wrt S
double\& theta, // partial wrt time
double\& vega, // partial wrt sigma
double\& rho){ // partial wrt r
vector<double> prices(no_steps+1);
vector<double> call_values(no_steps+1);
double delta_t =(time/no_steps);
double R = exp(r*delta_t);
double Rinv = 1.0/R;
double u = exp(sigma*sqrt(delta_t));
double d = 1.0/u;
double uu= u*u;
double pUp = (R-d)/(u-d);
double pDown = 1.0- pUp;
prices[0] = S*pow(d, no_steps);
for (int i=1; i<=no_steps; ++i) prices[i] = uu*prices[i-1];
for (int i=0; i<=no_steps; ++i) call_values[i] = max(0.0, (prices[i]-X));
for (int CurrStep=no_steps-1; CurrStep>=2; --CurrStep) {
for (int i=0; i<=CurrStep; ++i) {
prices[i] = d*
call_values[i] = (pDown*call_values[i]+pUp*call_values[i+1])*Rinv;
call_values[i] = max(call_values[i], prices[i]-X); // check for exercise
};
};
double f22 = call_values[2];
double f21 = call_values[1];
double f20 = call_values[0];
for (int i=0;i<=1;i++) {
prices[i] = d*
call_values[i] = (pDown*call_values[i]+pUp*call_values[i+1])*Rinv;
call_values[i] = max(call_values[i], prices[i]-X); // check for exercise
};
double f11 = call_values[1];
double f10 = call_values[0];
prices[0] = d*prices[1];
call_values[0] = (pDown*call_values[0]+pUp*call_values[1])*Rinv;
call_values[0] = max(call_values[0], S-X); // check for exercise on first date
double f00 = call_values[0];
delta = (f11-f10)/(S*u-S*d);
double h = 0.5 * S * (uu - d*d);
gamma = ((f22-f21)/(S*(uu-1)) - (f21-f20)/(S*(1-d*d))) / h;
theta = (f21-f00) / (2*delta_t);
double diff = 0.02;
double tmp_sigma = sigma+diff;
double tmp_prices = option_price_call_american_binomial(S,X,r,tmp_sigma,time,no_steps);
vega = (tmp_prices-f00)/diff;
diff = 0.05;
double tmp_r = r+diff;
tmp_prices = option_price_call_american_binomial(S,X,tmp_r,sigma,time,no_steps);
rho = (tmp_prices-f00)/diff;
};

```

C++ Code 10.4: Hedge parameters
```

C++ program:
void test_binomial_approximations_option_price_partials(){
double }S=100.0;\mathrm{ double }K=100.0
double r = 0.1; double sigma = 0.25;
double time=1.0; int no_steps = 100;
double delta, gamma, theta, vega, rho;
option_price_partials_american_call_binomial(S,K,r, sigma, time, no_steps,
delta, gamma, theta, vega, rho);
cout << " Call price partials " << endl;
cout << " delta = " << delta << endl;
cout << " gamma = " << gamma << endl;
cout << " theta = " << theta << endl
cout << " vega = " << vega << endl;
cout << " rho = " << rho << endl;
}:
Output from C++ program:
Call price partials
delta = 0.699792
gamma = 0.0140407
theta = -9.89067
vega = 34.8536
rho = 56.9652

```

Example 10.2: Option price partials using binomial approximations

\subsection*{10.3 Adjusting for payouts for the underlying}

The simplest case of a payout is the similar one to the one we saw in the Black Scholes case, a continous payout of \(y\).
```

\#include <cmath> // standard mathematical library
\#include <algorithm> // defines the max() operator
\#include <vector> // STL vector templates
using namespace std;
double option_price_call_american_binomial(const double\& S, // spot price
const double\& X, // exercice price
const double\& r, // interest rate
const double\& y, // continous payout
const double\& sigma, // volatility
const double\& t, // time to maturity
const int\& steps) { // no steps in binomial tree
double R = exp(r*(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(t/steps)); // up movement
double uu = u*u;
double d = 1.0/u;
double p_up = (exp((r-y)*(t/steps))-d)/(u-d);
double p_down = 1.0-p_up;
vector<double> prices(steps+1); // price of underlying
prices[0] = S*pow(d, steps);
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i-1]; // fill in the endnodes.
vector<double> call_values(steps+1); // value of corresponding call
for (int i=0; i<=steps; ++i) call_values[i] = max(0.0, (prices[i]-X)); // call payoffs at maturity
for (int step=steps-1; step>=0; --step) {
for (int i=0; i<=step; ++i) {
call_values[i] = (p_up*call_values[i+1]+p_down*call_values[i])*Rinv;
prices[i] = d*prices[i+1];
call_values[i] = max(call_values[i],prices[i]-X); // check for exercise
};
};
return call_values[0];
};

```

C++ Code 10.5: Binomial option price with continous payout

\subsection*{10.4 Pricing options on stocks paying dividends using a binomial approximation}

\subsection*{10.4.1 Checking for early exercise in the binomial model.}

If the underlying asset is a stock paying dividends during the maturity of the option, the terms of the option is not adjusted to reflect this cash payment, which means that the option value will reflect the dividend payments.
In the binomial model, the adjustment for dividends depend on whether the dividends are discrete or proportional.

\subsection*{10.4.2 Proportional dividends.}

For proportional dividends, we simply multiply with an adjustment factor the stock prices at the exdividend date, the nodes in the binomial tree will "link up" again, and we can use the same "rolling back" procedure.

\subsection*{10.4.3 Discrete dividends}

The problem is when the dividends are constant dollar amounts.
In that case the nodes of the binomial tree do not "link up," and the number of branches increases dramatically, which means that the time to do the calculation is increased.
The algorithm presented here implements this case, with no linkup, by constructing a binomial tree up to the ex-dividend date, and then, at the terminal nodes of that tree, call itself with one less dividend payment, and time to maturity the time remaining at the ex-dividend date. Doing that calculates the value of the option at the ex-dividend date, which is then compared to the value of exercising just before the ex-dividend date. It is a cute example of using recursion in simplifying calculations, but as with most recursive solutions, it has a cost in computing time. For large binomial trees and several dividends this procedure will take a long time.
```

\#include <cmath>
\#include <algorithm>
\#include <vector>
\#include "fin_recipes.h"
\#include <iostream>
double option_price_call_american_proportional_dividends_binomial(const double\& S,
const double\& X,
const double\& r,
const double\& sigma,
const double\& time,
const int\& no_steps,
const vector < double > \& dividend_times,
const vector<double>\& dividend_yields) {
// note that the last dividend date should be before the expiry date
int no_dividends=dividend_times.size();
if (no_dividends == 0) {
return option_price_call_american_binomial(S,X,r,sigma,time,no_steps); // price w/o dividends
};
double delta_t = time/no_steps;
double R = exp(r*delta_t);
double Rinv = 1.0/R;
double u = exp(sigma*sqrt(delta_t));
double uu= u*u;
double d = 1.0/u;
double pUp = (R-d)/(u-d);
double pDown = 1.0- pUp;
vector<int> dividend_steps(no_dividends); // when dividends are paid
for (int i=0; i<no_dividends; ++i) {
dividend_steps[i] = (int)(dividend_times[i]/time*no_steps);
};
vector<double> prices(no_steps+1);
vector<double> call_prices(no_steps+1);
prices[0] = S*pow(d, no_steps); // adjust downward terminal prices by dividends
for (int i=0; i<no_dividends; ++i) { prices[0]*=(1.0-dividend_yields[i]); };
for (int i=1; i<=no_steps; ++i) { prices[i] = uu*prices[i-1]; };
for (int i=0; i<=no_steps; ++i) call_prices[i] = max(0.0, (prices[i]-X));
for (int step=no_steps-1; step>=0; --step) {
for (int i=0;i<no_dividends;++i) { // check whether dividend paid
if (step==dividend_steps[i]) {
cout << "step " << step << endl;
for (int j=0;j<=(step+1);++j) {
prices[j]*=(1.0/(1.0-dividend_yields[i]));
};
};
};
for (int i=0; i<=step; ++i) {
call_prices[i] = (pDown*call_prices[i]+pUp*call_prices[i+1])*Rinv;
prices[i] = d* prices[i+1];
call_prices[i] = max(call_prices[i], prices[i]-X); // check for exercise
};
};
return call_prices[0];
};

```

C++ Code 10.6: Binomial option price of stock option where stock pays proportional dividends
```

\#include <cmath>
\#include <vector>
\#include "fin_recipes.h"
\#include <iostream>
double option_price_call_american_discrete_dividends_binomial(const double\& S,
const double\& K,
const double\& r,
const double\& sigma,
const double\& t,
const int\& steps,
const vector<double }>\&\&\mp@code{dividend_times,
const vector <double }>\&\&\mathrm{ dividend_amounts) {
int no_dividends = dividend_times.size();
if (no_dividends==0) return option_price_call_american_binomial(S,K,r,sigma,t,steps);// just do regular
int steps_before_dividend = (int)(dividend_times[0]/t*steps);
const double R = exp(r*(t/steps));
const double Rinv = 1.0/R;
const double u = exp(sigma*sqrt(t/steps));
const double d = 1.0/u;
const double pUp = (R-d)/(u-d);
const double pDown = 1.0-pUp;
double dividend_amount = dividend_amounts[0];
vector<double> tmp_dividend_times(no_dividends-1); // temporaries with
vector<double> tmp_dividend_amounts(no_dividends-1); // one less dividend
for (int i=0;i<(no_dividends - 1);++i){
tmp_dividend_amounts[i] = dividend_amounts[i+1]
tmp_dividend_times[i] = dividend_times[i+1] - dividend_times[0];
};
vector<double> prices(steps_before_dividend+1);
vector<double> call_values(steps_before_dividend+1);
prices[0] = S*pow(d, steps_before_dividend);
for (int i=1; i<=steps_before_dividend; ++i) prices[i] = u*u*prices[i-1];
for (int i=0; i<=steps_before_dividend; ++i){
double value_alive
= option_price_call_american_discrete_dividends_binomial(prices[i]-dividend_amount,K,r, sigma,
t-dividend_times[0],// time after first dividend
steps-steps_before_dividend,
tmp_dividend_times,
tmp_dividend_amounts);
call_values[i] = max(value_alive,(prices[i]-K)); // compare to exercising now
};
for (int step=steps_before_dividend -1; step>=0; --step) {
for (int i=0; i<=step; ++i) {
prices[i] = d*
call_values[i] = (pDown*call_values[i]+pUp*call_values[i+1])*Rinv;
call_values[i] = max(call_values[i], prices[i]-K);
};
};
return call_values[0];
};

```

C++ Code 10.7: Binomial option price of stock option where stock pays discrete dividends
```

C++ program:
void test_binomial_approximations_option_price_dividends(){
double S = 100.0; double K = 100.0;
double r=0.10; double sigma =0.25;
double time=1.0;
int no_steps = 100;
double d=0.02;
cout << " call price with continuous dividend payout =
<< option_price_call_american_binomial(S,K,r,d,sigma,time,no_steps) << endl;
vector<double> dividend_times; vector<double> dividend_yields
dividend_times.push_back(0.25); dividend_yields.push_back(0.025);
dividend_times.push_back(0.75); dividend_yields.push_back(0.025)
cout << " call price with proportial dividend yields at discrete dates = "
<< option_price_call_american_proportional_dividends_binomial(S,K,r,sigma,time,no_steps,
dividend_times, dividend_yields)
<< endl;
vector<double> dividend_amounts;
dividend_amounts.push_back(2.5);
dividend_amounts.push_back(2.5);
cout << " call price with proportial dividend amounts at discrete dates = "
<< option_price_call_american_discrete_dividends_binomial(S,K,r,sigma,time,no_steps,
dividend_times, dividend_amounts)
};
Output from C++ program:
call price with continuous dividend payout = 13.5926
step }7
step 25
call price with proportial dividend yields at discrete dates = 11.8604
call price with proportial dividend amounts at discrete dates = 12.0233

```

Example 10.3: Binomial pricing with dividends

\subsection*{10.5 Option on futures}

For American options, because of the feasibility of early exercise, the binomial model is used to approximate the option value.
```

\#include <cmath>
\#include <algorithm>
\#include <vector>
using namespace std;
double futures_option_price_call_american_binomial(const double\& F, // price futures contract
const double\& X, // exercise price
const double\& r, // interest rate
const double\& sigma, // volatility
const double\& time, // time to maturity
const int\& no_steps) { // number of steps
vector<double}>\mathrm{ futures_prices(no_steps +1);
vector<double> call_values (no_steps+1);
double t_delta= time/no_steps;
double Rinv = exp(-r*(t_delta));
double u = exp(sigma*sqrt(t_delta));
double d = 1.0/u;
double uu= u*u;
double pUp = (1-d)/(}\textrm{u}-\textrm{d});// note how probability is calculated
double pDown = 1.0 - pUp;
futures_prices[0] = F* pow(d, no_steps);
int i;
for (i=1; i<=no_steps; ++i) futures_prices[i] = uu*futures_prices[i-1]; // terminal tree nodes
for (i=0; i<=no_steps; ++i) call_values[i] = max(0.0, (futures_prices[i]-X));
for (int step=no_steps-1; step>=0; --step) {
for (i=0; i<=step; ++i) {
futures_prices[i] = d*futures_prices[i+1];
call_values[i] = (pDown*call_values[i]+pUp*call_values[i+1])*Rinv;
call_values[i] = max(call_values[i], futures_prices[i]-X); // check for exercise
};
};
return call_values[0];
};

```

\section*{C++ Code 10.8: Option on futures}
```

C++ program:
void test_binomial_approximations_futures_options(){
double F = 50.0; double K = 45.0;
double r =0.08; double sigma =0.2;
double time=0.5;
int no_steps=100;
cout << " european futures call option="
<< futures_option_price_call_american_binomial(F,K,r,sigma,time,no_steps) << endl;
}:
Output from C++ program:
european futures call option = 5.74254

```

Example 10.4: Futures option price

\subsection*{10.6 Foreign Currency options}

For American options, the usual method is approximation using binomial trees, checking for early exercise due to the interest rate differential.
```

\#include <cmath>
\#include <algorithm>
\#include <vector>
using namespace std;
double currency_option_price_call_american_binomial(const double\& S,
const double\& K,
const double\& r,
const double\& r_f,
const double\& sigma,
const double\& time,
const int\& no_steps) {
vector<double> exchange_rates(no_steps+1);
vector<double> call_values(no_steps+1);
double t_delta= time/no_steps;
double Rinv = exp(-r*(t_delta));
double u = exp(sigma*sqrt(t_delta));
double d = 1.0/u;
double uu= u*u;
double pUp = (exp((r-r_f)*t_delta) -d)/(u-d); // adjust for foreign int.rate
double pDown = 1.0 - pUp;
exchange_rates[0] = S*pow(d, no_steps);
int i;
for (i=1; i<=no_steps; ++i) {
exchange_rates[i] = uu*exchange_rates[i-1]; // terminal tree nodes
}
for (i=0; i<=no_steps; ++i) call_values[i] = max(0.0, (exchange_rates[i]-K));
for (int step=no_steps-1; step>=0; --step) {
for (i=0; i<=step; ++i) {
exchange_rates[i] = d*exchange_rates[i+1];
call_values[i] = (pDown*call_values[i]+pUp*call_values[i+1])*Rinv;
call_values[i] = max(call_values[i], exchange_rates[i]-K); // check for exercise
};
};
return call_values[0];
};

```

C++ Code 10.9: Binomial Currency Option
```

C++ program:
void test_binomial_approximations_currency_options(){
double S = 50.0; double K = 52.0;
double r = 0.08; double rf=0.05;
double sigma = 0.2; double time=0.5;
int no_steps = 100;
cout << " european currency option call = "
<< currency_option_price_call_american_binomial(S,K,r,rf,sigma,time,no_steps) << endl;
};
Output from C++ program:
european currency option call = 2.23129

```

Example 10.5: Currency option price

\subsection*{10.7 References}

The original source for binomial option pricing was the paper by Cox et al. (1979). Good textbook discussions are in Cox and Rubinstein (1985), Bossaerts and Ødegaard (2001) and Hull (2006).
Exercise 20.
Consider an European call option on non-dividend paying stock, where \(S=100, K=100, \sigma=0.2\), \((T-t)=1\) and \(r=0.1\).
1. Calculate the price of this option using Black Scholes
2. Calculate the price using a binomial approximation, using 10,100 and 1000 steps in the approximation.
3. Discuss what are sources of differences in the estimated prices.

\section*{Chapter 11}

\section*{Finite Differences}

\subsection*{11.1 Explicit Finite differences}

The method of choice for any engineer given a differential equation to solve is to numerically approximate it using a finite difference scheme, which is to approximate the continous differential equation with a discrete difference equation, and solve this difference equation.

\subsection*{11.2 European Options.}

For European options we do not need to use the finite difference scheme, but we show how one would find the european price for comparison purposes. We show the case of an explicit finite difference scheme in code 11.1. A problem with the explicit version is that it may not converge for certain combinations of inputs.
```

\#include < cmath >
\#include <algorithm>
\#include < vector>
using namespace std;
double option_price_put_european_finite_diff_explicit(const double\& S,
const double\& X ,
const double\& r,
const double\& sigma,
const double\& time,
const int\& no_S_steps,
const int\& no_t_steps) \{
double sigma_sqr $=$ sigma*sigma;
unsigned int M ; // need $M=$ no_S_steps to be even.
if $(($ no_S_steps $\% 2)==1)$ \{ $M=$ no_S_steps $+1 ;\}$ else $\left\{M=n o _S _s t e p s ;\right\} ;$
double delta_S $=2.0^{*} \mathrm{~S} / \mathrm{M}$;
vector<double> S_values(M+1);
for (unsigned $m=0 ; m<=M ; m++$) $\left\{\operatorname{S_ values}[m]=m *\right.$ delta_S; $\}$;
int $\mathrm{N}=$ no_t_steps;
double delta_t $=$ time $/ \mathrm{N}$;
vector $<$ double $>a(M)$;
vector<double> $\mathrm{b}(\mathrm{M})$;
vector $<$ double> c(M);
double $\mathrm{r} 1=1.0 /\left(1.0+\mathrm{r}^{*}\right.$ delta_t $)$
double r2=delta_t/(1.0+r*delta_t);
for (unsigned int $\mathrm{j}=1 ; \mathrm{j}<\mathrm{M} ; \mathrm{j}++$) $\{$
$\mathrm{a}[\mathrm{j}]=\mathrm{r} 2^{*} 0.5^{*} \mathrm{j}^{*}(-\mathrm{r}+$ sigma_sqr*j$)$
$\mathrm{b}[\mathrm{j}]=\mathrm{r} 1 *\left(1.0-\right.$ sigma_sqr${ }^{*}{ }^{*}{ }^{*}{ }^{*}$ delta_t t$)$;
$\mathrm{c}[\mathrm{j}]=\mathrm{r} 2^{*} 0.5{ }^{*} \mathrm{j}^{*}\left(\mathrm{r}+\right.$ sigma_sqr$\left.{ }^{*} \mathrm{j}\right)$;
\};
vector<double> f_next(M+1);
for (unsigned $m=0 ; m<=M ;++m$) \{ f_next $\left.[m]=\max \left(0.0, X-S _v a l u e s[m]\right) ;\right\} ;$
double $\mathrm{f}[\mathrm{M}+1]$
for (int $\mathrm{t}=\mathrm{N}-1 ; \mathrm{t}>=0 ;--\mathrm{t}$) \{
$\mathrm{f}[0]=\mathrm{X}$;
for (unsigned $\mathrm{m}=1 ; \mathrm{m}<\mathrm{M} ;++\mathrm{m}$) \{
$\mathrm{f}[\mathrm{m}]=\mathrm{a}[\mathrm{m}]^{*} \mathrm{f}$ _next $[\mathrm{m}-1]+\mathrm{b}[\mathrm{m}]^{*} \mathrm{f} _n \operatorname{next}[\mathrm{~m}]+\mathrm{c}[\mathrm{m}]{ }^{*} \mathrm{f} _$next $[\mathrm{m}+1]$;
\};
$\mathrm{f}[\mathrm{M}]=0$;
for (unsigned $m=0 ; m<=M ;++m$) \{ f_next $[m]=f[m] ;\}$
\};
return $\mathrm{f}[\mathrm{M} / 2]$;
\};

```

C++ Code 11.1: Explicit finite differences calculation of european put option

\subsection*{11.3 American Options.}

We now compare the American versions of the same algoritms, the only difference being the check for exercise at each point. Code 11.2 shows the code for an american put option.
```

\#include <cmath>
\#include <algorithm>
\#include <vector>
using namespace std;
double option_price_put_american_finite_diff_explicit(const double\& S,
const double\& X,
const double\& r,
const double\& sigma,
const double\& time,
const int\& no_S_steps,
const int\& no_t_steps) {
double sigma_sqr = sigma*sigma;
int M; // need M = no_S_steps to be even:
if ((no_S_steps%2)==1) { M=no_S_steps+1; } else { M=no_S_steps; };
double delta_S = 2.0*S/M;
vector<double> S_values(M+1);
for (int m=0;m<=M;m++) { S_values[m] = m*delta_S; };
int N=no_t_steps;
double delta_t = time/N;
vector<double> a(M);
vector<double> b(M);
vector<double> c(M);
double r1=1.0/(1.0+r* delta_t);
double r2=delta_t/(1.0+r*delta_t);
for (int j=1;j<M;j++){
a[j] = r2*0.5*j*(-r+sigma_sqr*j);
b[j] = r1*(1.0-sigma_sqr*j*j**delta_t);
c[j] = r2*0.5*j*(r+sigma_sqr*j)
};
vector<double> f_next(M+1);
for (int m=0;m<=M;++m) { f_next[m]=max(0.0,X-S_values[m]); };
vector < double> f(M+1);
for (int t=N-1;t>=0;--t) {
f[0]=X;
for (int m=1;m<M;++m) {
f[m]=a[m]*f_next[m-1]+b[m]*f_next[m]+c[m]*f_next[m+1];
f[m] = max(f[m],X-S_values[m]); // check for exercise
};
f[M] = 0;
for (int m=0;m<=M;++m) { f_next[m] = f[m]; };
};
return f[M/2];
};

```

C++ Code 11.2: Explicit finite differences calculation of american put option

Readings Brennan and Schwartz (1978) is one of the first finance applications of finite differences. Section 14.7 of Hull (1993) has a short introduction to finite differences. Wilmott, Dewynne, and Howison (1994) is an exhaustive source on option pricing from the perspective of solving partial differential equations.
```

C++ program:
void test_explicit_finite_differences(){
double S = 50.0
double K = 50.0;
double r = 0.1;
double sigma = 0.4;
double time=0.4167
int no_S_steps=20
int no_t_steps=11;
cout << " explicit finite differences, european put price = ";
cout << option_price_put_european_finite_diff_explicit(S,K,r,sigma,time,no_S_steps,no_t_steps)
<< endl;
cout << " explicit finite differences, american put price = ";
cout << option_price_put_american_finite_diff_explicit(S,K,r,sigma,time,no_S_steps,no_t_steps)
<< endl;
};
Output from C++ program:
explicit finite differences, european put price = 4.03667
explicit finite differences, american put price = 4.25085

```

Example 11.1: Explicit finite differences

\section*{Chapter 12}

\section*{Option pricing by simulation}

We now consider using Monte Carlo methods to estimate the price of an European option, and let us first consider the case of the "usual" European Call, which is priced by the Black Scholes equation. Since there is already a closed form solution for this case, it is not really necessary to use simulations, but we use the case of the standard call for illustrative purposes.
At maturity, a call option is worth
\[
c_{T}=\max \left(0, S_{T}-X\right)
\]

At an earlier date \(t\), the option value will be the expected present value of this.
\[
c_{t}=E\left[P V\left(\max \left(0, S_{T}-X\right)\right]\right.
\]

Now, an important simplifying feature of option pricing is the "risk neutral result," which implies that we can treat the (suitably transformed) problem as the decision of a risk neutral decision maker, if we also modify the expected return of the underlying asset such that this earns the risk free rate.
\[
c_{t}=e^{-r(T-t)} E^{*}\left[\max \left(0, S_{T}-X\right)\right]
\]
where \(E^{*}[\cdot]\) is a transformation of the original expectation. One way to estimate the value of the call is to simulate a large number of sample values of \(S_{T}\) according to the assumed price process, and find the estimated call price as the average of the simulated values. By appealing to a law of large numbers, this average will converge to the actual call value, where the rate of convergence will depend on how many simulations we perform.

\subsection*{12.1 Simulating lognormally distributed random variables}

Lognormal variables are simulated as follows. Let \(\tilde{x}\) be normally distributed with mean zero and variance one. If \(S_{t}\) follows a lognormal distribution, then the one-period-later price \(S_{t+1}\) is simulated as
\[
S_{t+1}=S_{t} e^{\left(r-\frac{1}{2} \sigma^{2}\right)+\sigma \tilde{x}},
\]
or more generally, if the current time is \(t\) and terminal date is \(T\), with a time between \(t\) and \(T\) of \((T-t)\),
\[
S_{T}=S_{t} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma \sqrt{T-t} \tilde{x}}
\]

Simulation of lognormal random variables is illustrated by code 12.1.

\subsection*{12.2 Pricing of European Call options}

For the purposes of doing the Monte Carlo estimation of the price if an European call
\[
c_{t}=e^{-r(T-t)} E\left[\max \left(0, S_{T}-X\right)\right]
\]
note that here one merely need to simulate the terminal price of the underlying, \(S_{T}\), the price of the underlying at any time between \(t\) and \(T\) is not relevant for pricing. We proceed by simulating lognormally distributed random variables, which gives us a set of observations of the terminal price \(S_{T}\). If we let \(S_{T, 1}, S_{T, 2}, S_{T, 3}, \ldots S_{T, n}\) denote the \(n\) simulated values, we will estimate \(E^{*}\left[\max \left(0, S_{T}-X\right)\right]\) as the average of option payoffs at maturity, discounted at the risk free rate.
\[
\hat{c}_{t}=e^{-r(T-t)}\left(\sum_{i=1}^{n} \max \left(0, S_{T, i}-X\right)\right)
\]

Code 12.2 shows the implementation of a Monte Carlo estimation of an European call option.
```

\#include <cmath>
using namespace std;
\#include "normdist.h"
double simulate_lognormal_random_variable(const double\& S, // current value of variable
const double\& r, // interest rate
const double\& sigma, // volatitily
const double\& time) { // time to final date
double R = (r - 0.5 * pow(sigma,2))*time;
double SD = sigma * sqrt(time);
return S * exp(R + SD * random_normal());
};

```

C++ Code 12.1: Simulating a lognormally distributed random variable
```

\#include <cmath> // standard mathematical functions
\#include <algorithm> // define the max() function
using namespace std;
\#include "normdist.h" // definition of random number generator
double
option_price_call_european_simulated(const double\& S, // price of underlying
const double\& X, // exercise price
const double\& r, // risk free interest rate
const double\& sigma, // volatility of underlying
const double\& time, // time to maturity (in years)
const int\& no_sims){ // number of simulations
double R = (r - 0.5 * pow(sigma,2))*time;
double SD = sigma * sqrt(time);
double sum_payoffs = 0.0;
for (int n=1; n<=no_sims; n++) {
double S_T = S* exp(R + SD * random_normal());
sum_payoffs += max(0.0, S_T-X);
};
return exp(-r*time) * (sum_payoffs/double(no_sims));
};

```

C++ Code 12.2: European Call option priced by simulation

\subsection*{12.3 Hedge parameters}

It is of course, just as in the standard case, desirable to estimate hedge parameters as well as option prices. We will show how one can find an estimate of the option delta, the first derivative of the call
```

C++ program:
void test_simulation_pricing() {
double }\textrm{S}=100.0\mathrm{ ; double }K=100.0; double r=0.1; double sigma=0.25
double time=1.0; int no_sims=5000;
cout << " call: black scholes price = " << option_price_call_black_scholes(S,K,r,sigma,time) << endl
cout <<" simulated price = "
<< option_price_call_european_simulated(S,K,r,sigma,time,no_sims) << endl;
cout << " put: black scholes price = " << option_price_put_black_scholes(S,K,r,sigma,time) << endl;
cout << " simulated price = "
<< option_price_put_european_simulated(S,K,r,sigma,time, no_sims) << endl;
};
Output from C++ program:
call: black scholes price = 14.9758
simulated price = 14.8404
put: black scholes price = 5.45954
simulated price = 5.74588

```
price with respect to the underlying security: \(\Delta=\frac{\partial c_{t}}{\partial S}\). To understand how one goes about estimating this, let us recall that the first derivative of a function \(f\) is defined as the limit
\[
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\]

Thinking of \(f(S)\) as the option price formula \(c_{t}=f(S ; X, r, \sigma,(T-t))\), we see that we can evaluate the option price at two different values of the underlying, \(S\) and \(S+q\), where \(q\) is a small quantity, and estimate the option delta as
\[
\widehat{\Delta}=\frac{f(S+q)-f(S)}{q}
\]

In the case of Monte Carlo estimation, it is very important that this is done by using the same sequence of random variables to estimate the two option prices with prices of the underlying \(S\) and \(S+q\). Code 12.3 implements this estimation of the option delta. One can estimate other hedge parameters in a simular
```

\#include <cmath> // standard mathematical functions
\#include <algorithm> // define the max() function
using namespace std;
\#include "normdist.h" // definition of random number generator
double option_price_delta_call_european_simulated(const double\& S,
const double\& X,
const double\& r,
const double\& sigma,
const double\& time,
const int\& no_sims){
double R = (r - 0.5 * pow(sigma,2))*time;
double SD = sigma * sqrt(time);
double sum_payoffs = 0.0;
double sum_payoffs_q = 0.0;
double q = S*0.01;
for (int n=1; n<= no_sims; n++) {
double Z = random_normal();
double S_T = S* exp(R + SD * Z);
sum_payoffs += max(0.0, S_T-X);
double S_T_q = (S+q)* }\operatorname{exp}(\textrm{R}+\textrm{SD}*\textrm{Z})
sum_payoffs_q += max(0.0, S_T_q-X);
};
double c = exp(-r*time) * (sum_payoffs/no_sims);
double c_q = exp(-r*time) * (sum_payoffs_q/no_sims);
return (c_q-c)/q;
};

```

C++ Code 12.3: Estimate Delta of European Call option priced by Monte Carlo
way.
```

C++ program:
void test_simulation_pricing_delta(){
double }\textrm{S}=100.0\mathrm{ ; double }\textrm{K}=100.0;\mathrm{ double }\textrm{r}=0.1\mathrm{ ; double sigma }=0.25\mathrm{ ;
double time=1.0; int no_sims=5000;
cout << " call: bs delta = " << option_price_delta_call_black_scholes(S,K,r,sigma,time)
<<" sim delta = " << option_price_delta_call_european_simulated(S,K,r,sigma,time,no_sims)
<< endl;
cout << " put: bs delta = " << option_price_delta_put_black_scholes(S,K,r,sigma,time)
<<" sim delta = " << option_price_delta_put_european_simulated(S,K,r,sigma,time,no_sims)
<< endl;
};
Output from C++ program:
call: bs delta = 0.700208 sim delta = 0.701484
put: bs delta = -0.299792 sim delta = -0.307211

```

\subsection*{12.4 More general payoffs. Function prototypes}

The above shows the case for a call option. If we want to price other types of options, with different payoffs we could write similar routines for every possible case. But this would be wasteful, instead a bit of thought allows us to write option valuations for any kind of option whose payoff depend on the value of the underlying at maturity, only. Let us now move toward a generic routine for pricing derivatives with Monte Carlo. This relies on the ability of C++ to write subroutines which one call with function prototypes, i.e. that in the call to to the subroutine/function one provides a function instead of a variable. Consider pricing of standard European put and call options. At maturity each option only depend on the value of the underlying \(S_{T}\) and the exercise price \(X\) through the relations
\[
\begin{aligned}
& C_{T}=\max \left(S_{T}-X, 0\right) \\
& P_{T}=\max \left(X-S_{T}, 0\right)
\end{aligned}
\]

Code 12.4 shows two \(\mathrm{C}++\) functions which calculates this.
```

\#include <algorithm>
using namespace std;
double payoff_call(const double\& price, const double\& X){
return max(0.0,price-X);
};
double payoff_put (const double\& price, const double\& X) {
return max(0.0, X - price);
};

```

\section*{C++ Code 12.4: Payoff call and put options}

The interesting part comes when one realises one can write a generic simulation routine to which one provide one of these functions, or some other function describing a payoff which only depends on the price of the underlying and some constant. Code 12.5 shows how this is done.
```

\#include <cmath>
using namespace std;
\#include "fin_recipes.h"
double
derivative_price_simulate_european_option_generic(const double\& S, // price of underlying
const double\& X, // used by user provided payoff function
const double\& r, // risk free interest rate
const double\& sigma, // volatility
const double\& time, // time to maturity
double payoff(const double\& price, const double\& X),
// user provided function
const int\& no_sims) { // number of simulations to run
double sum_payoffs=0;
for (int n=0; n<no_sims; n++) {
double S_T = simulate_lognormal_random_variable(S,r,sigma,time);
sum_payoffs += payoff(S_T,X);
};
return exp(-r*time) * (sum_payoffs/no_sims);
};

```

C++ Code 12.5: Generic simulation pricing
Note the presence of the line
double payoff(const double\& price, const double\& X),
in the subroutine call. When this function is called, the calling program will need to provide a function to put there, such as the Black Scholes example above. The next example shows a complete example of how this is done.
```

C++ program:
void test_simulation_bs_case_using_generic_routine()\{
double $\mathrm{S}=100$; double $\mathrm{X}=100$; double $\mathrm{r}=0.1$;
double sigma $=0.25$; double time $=1.0 ;$ int no_sims $=50000 ;$
cout \ll "Black Scholes call option price $=$ " \ll option_price_call_black_scholes(S, X,r,sigma,time) \ll endl;
cout \ll "Simulated call option price = "
\ll derivative_price_simulate_european_option_generic(S,X,X,sigma,time,payoff_call,no_sims)
<< endl;
cout \ll "Black Scholes put option price $=$ " \ll option_price_put_black_scholes(S,X,r,sigma,time) \ll endl;
cout \ll "Simulated put option price = "
\ll derivative_price_simulate_european_option_generic(S,X,r,sigma,time,payoff_put,no_sims)
<< endl;
\};
Output from C++ program:
Black Scholes call option price $=14.9758$
Simulated call option price $=14.995$
Black Scholes put option price $=5.45954$
Simulated put option price $=5.5599$

```

As we see, even with as many as 50,000 simuations, the option prices estimated using Monte Carlo still differs substantially from the "true" values.

\subsection*{12.5 Improving the efficiency in simulation}

There are a number of ways of "improving" the implementation of Monte Carlo estimation such that the estimate is closer to the true value.

\subsection*{12.5.1 Control variates.}

One is the method of control variates. The idea is simple. When one generates the set of terminal values of the underlying security, one can value several derivatives using the same set of terminal values. What if one of the derivatives we value using the terminal values is one which we have an analytical solution to? For example, suppose we calculate the value of an at the money European call option using both the (analytical) Black Scholes formula and Monte Carlo simulation. If it turns out that the Monte Carlo estimate overvalues the option price, we think that this will also be the case for other derivatives valued using the same set of simulated terminal values. We therefore move the estimate of the price of the derivative of interest downwards.
Thus, suppose we want to value an European put and we use the price of an at the money European call as the control variate. Using the same set of simulated terminal values \(S_{T, i}\), we estimate the two options using Monte Carlo as:
\[
\begin{aligned}
& \hat{p}_{t}=e^{-r(T-t)}\left(\sum_{i=1}^{n} \max \left(0, X-S_{T, i}\right)\right) \\
& \hat{c}_{t}=e^{-r(T-t)}\left(\sum_{i=1}^{n} \max \left(0, S_{T, i}-X\right)\right)
\end{aligned}
\]

We calculate the Black Scholes value of the call \(\hat{c}_{t}^{b s}\), and calculate \(p_{t}^{c v}\), the estimate of the put price with
a control variate adjustment, as follows
\[
\hat{p}_{t}^{c v}=\hat{p}_{t}+\left(c_{t}^{b s}-\hat{c}_{t}\right)
\]

One can use other derivatives than the at-the-money call as the control variate, the only limitation being that it has a tractable analytical solution.
Code 12.6 shows the implementation of a Monte Carlo estimation using an at-the-money European call as the control variate.
```

\#include <cmath>
using namespace std;
\#include "fin_recipes.h"
double
derivative_price_simulate_european_option_generic_with_control_variate(const double\& S,
const double\& X,
const double\& r,
const double\& sigma,
const double\& time,
double payoff(const double\& S,
const double\& X),
const int\& no_sims) {
double c_bs = option_price_call_black_scholes(S,S,r,sigma,time);// price an at the money Black Scholes call
double sum_payoffs=0;
double sum_payoffs_bs=0;
for (int n=0; n<no_sims; n++) {
double S_T= simulate_lognormal_random_variable(S,r,sigma,time);
sum_payoffs += payoff(S_T,X);
sum_payoffs_bs += payoff_call(S_T,S); // simulate at the money Black Scholes price
};
double c_sim = exp(-r*time) * (sum_payoffs/no_sims);
double c_bs_sim = exp(-r*time) * (sum_payoffs_bs/no_sims);
c_sim += (c_bs-c_bs_sim);
return c_sim;
};

```

C++ Code 12.6: Generic with control variate

\subsection*{12.5.2 Antithetic variates.}

An alternative to using control variates is to consider the method of antithetic variates. The idea behind this is that Monte Carlo works best if the simulated variables are "spread" out as closely as possible to the true distribution. Here we are simulating unit normal random variables. One property of the normal is that it is symmetric around zero, and the median value is zero. Why don't we enforce this in the simulated terminal values? An easy way to do this is to first simulate a unit random normal variable \(Z\), and then use both \(Z\) and \(-Z\) to generate the lognormal random variables. Code 12.7 shows the implementation of this idea. Boyle (1977) shows that the efficiency gain with antithetic variates is not particularly large. There are other ways of ensuring that the simulated values really span the whole sample space, sometimes called "pseudo Monte Carlo."
```

\#include "fin_recipes.h"
\#include "normdist.h"
\#include <cmath>
using namespace std;
double
derivative_price_simulate_european_option_generic_with_antithetic_variate(const double\& S,
const double\& X,
const double\& r,
const double\& sigma,
const double\& time,
double payoff(const double\& S,
const double\& X),
const int\& no_sims) {
double R = (r - 0.5 * pow(sigma,2))*time;
double SD = sigma * sqrt(time);
double sum_payoffs=0;
for (int n=0; n<no_sims; n++) {
double x=random_normal();
double S1 = S * exp(R + SD * x);
sum_payoffs += payoff(S1,X);
double S2 = S * exp(R + SD * (-x));
sum_payoffs += payoff(S2,X)
};
return exp(-r*time) * (sum_payoffs/(2*no_sims));
};

```

C++ Code 12.7: Generic with antithetic variates

\subsection*{12.5.3 Example}

Let us see how these improvements change actual values. We use the same numbers as in the previous example, but add estimation using control and antithetic variates.
```

C++ program:
void test_simulation_bs_case_using_generic_routine_improving_efficiency()\{
double $S=100$; double $K=100$; double $r=0.1$;
double sigma $=0.25$; double time $=1$; int no_sims $=50000$;
cout \ll "Black Scholes call option price $=$ "
<< option_price_call_black_scholes(S,K,r,sigma,time) \ll endl;
cout \ll "Simulated call option price = "
\ll derivative_price_simulate_european_option_generic(S,K,r,sigma,time, payoff_call,no_sims)
<< endl;
cout \ll "Simulated call option price, CV = "
\ll derivative_price_simulate_european_option_generic_with_control_variate(S,K,r,sigma,time,
payoff_call,no_sims)
\ll endl;
cout \ll "Simulated call option price, AV = "
\ll derivative_price_simulate_european_option_generic_with_antithetic_variate(S,K,r,sigma,time,
payoff_call,no_sims)
<< endl;
cout \ll "Black Scholes put option price $=$ " \ll option_price_put_black_scholes(S,K,r,sigma,time) \ll endl;
cout \ll "Simulated put option price = "
\ll derivative_price_simulate_european_option_generic(S,K,r,sigma,time,payoff_put,no_sims) \ll endl
cout \ll "Simulated put option price, CV = "
\ll derivative_price_simulate_european_option_generic_with_control_variate(S,K,r,sigma,time,
payoff_put,no_sims)
\ll endl;
cout \ll "Simulated put option price, AV = "
\ll derivative_price_simulate_european_option_generic_with_antithetic_variate(S,K,r,sigma,time,
payoff_put,no_sims)
\ll endl;
\};
Output from C++ program:
Black Scholes call option price $=14.9758$
Simulated call option price $=14.995$
Simulated call option price, CV $=14.9758$
Simulated call option price, $\mathrm{AV}=14.9919$
Black Scholes put option price $=5.45954$
Simulated put option price $=5.41861$
Simulated put option price, $\quad C V=5.42541$
Simulated put option price, $A V=5.46043$

```

\subsection*{12.6 More exotic options}

These generic routines can also be used to price other options. Any European option that only depends on the terminal value of the price of the underlying security can be valued. Consider the binary options discussed by e.g. Hull (2006). An cash or nothing call pays a fixed amount \(Q\) if the price of the asset is above the exercise price at maturity, otherwise nothing. An asset or nothing call pays the price of the asset if the price is above the exercise price at maturity, otherwise nothing. Both of these options are easy to implement using the generic routines above, all that is necesary is to provide the payoff functions as shown in code 12.8.
```

double payoff_cash_or_nothing_call(const double\& price, const double\& X){
if (price>=X) return 1;
return 0;
};
double payoff_asset_or_nothing_call(const double\& price, const double\& X){
if (price>=X) return price;
return 0;
};

```

\section*{C++ Code 12.8: Payoff binary options}

Now, many exotic options are not simply functions of the terminal price of the underlying security, but depend on the evolution of the price from "now" till the terminal date of the option. For example options that depend on the average of the price of the underlying (Asian options). For such cases one will have to simulate the whole path. We will return to these cases in the chapter on pricing of exotic options.

Further Reading Boyle (1977) is a good early source on the use of the Monte Carlo technique for pricing derivatives. Simulation is also covered in Hull (2006).

\section*{Exercise 21.}

Consider the pricing of an European Call option as implemented in code 12.2, and the generic formula for pricing with Monte Carlo for European options that only depend on the terminal value of the underlying security, as implemented in code 12.5 .
Note the difference in the implementation of the lognormal simulation of terminal values. Why can one argue that the first implementation is more efficient than the other?
```

C++ program:
void test_simulation_binary_options(){
double }\textrm{S}=100.0\mathrm{ ; double }\textrm{K}=100.0\mathrm{ ; double }\textrm{r}=0.1\mathrm{ ; double sigma =0.25;
double time=1.0; int no_sims=5000;
cout << " cash or nothing, Q=1: "
<< derivative_price_simulate_european_option_generic(S,K,r,sigma,time,
payoff_cash_or_nothing_call,
no_sims)
<< endl;
cout << " control_variate "
<< derivative_price_simulate_european_option_generic_with_control_variate(S,K,r,sigma,time,
payoff_cash_or_nothing_ca|l,
no_sims)
<< endl;
cout << " antithetic_variate "
<< derivative_price_simulate_european_option_generic_with_antithetic_variate(S,K,r,sigma,time,
payoff_cash_or_nothing_call,
no_sims)
<< endl;
cout << " asset or nothing: "
<< derivative_price_simulate_european_option_generic(S,K,r,sigma,time,
payoff_asset_or_nothing_call,
no_sims)
<< endl;
cout << " control_variate "
<< derivative_price_simulate_european_option_generic_with_control_variate(S,K,r,sigma,time,
payoff_asset_or_nothing_call,
no_sims)
<< endl;
cout << " antithetic_variate "
<< derivative_price_simulate_european_option_generic_with_antithetic_variate(S,K,r,sigma,time,
payoff_asset_or_nothing_call,
no_sims)
<< endl;
};
Output from C++ program:
cash or nothing, Q=1: 0.547427
control_variate 1.02552
antithetic_variate 0.549598
asset or nothing: 70.5292
control_variate 69.8451
antithetic_variate 70.2205

```

\section*{Chapter 13}

\section*{Approximations}

There has been developed some useful approximations to various specific options. It is of course American options that are approximated. The particular example we will look at, is a general quadratic approximation to American call and put prices.

\subsection*{13.1 A quadratic approximation to American prices due to Barone-Adesi and Whaley.}

We now discuss an approximation to the option price of an American option on a commodity, described in Barone-Adesi and Whaley (1987) (BAW). \({ }^{1}\) The commodity is assumed to have a continuous payout \(b\). The starting point for the approximation is the (Black-Scholes) stochastic differential equation valid for the value of any derivative with price \(V\).
\[
\begin{equation*}
\frac{1}{2} \sigma^{2} S^{2} V_{S} S+b S V_{S}-r V+V_{t}=0 \tag{13.1}
\end{equation*}
\]

Here \(V\) is the (unknown) formula that determines the price of the contingent claim. For an European option the value of \(V\) has a known solution, the adjusted Black Scholes formula. For American options, which may be exercised early, there is no known analytical solution.
To do their approximation, BAW decomposes the American price into the European price and the early exercise premium
\[
C(S, T)=c(S, T)+\varepsilon_{C}(S, T)
\]

Here \(\varepsilon_{C}\) is the early exercise premium. The insight used by BAW is that \(\varepsilon_{C}\) must also satisfy the same partial differential equation. To come up with an approximation BAW transformed equation (13.1) into one where the terms involving \(V_{t}\) are neglible, removed these, and ended up with a standard linear homeogenous second order equation, which has a known solution.
The functional form of the approximation is shown in formula 13.1.
In implementing this formula, the only problem is finding the critical value \(S^{*}\). This is the classical problem of finding a root of the equation
\[
g\left(S^{*}\right)=S^{*}-X-c\left(S^{*}\right)-\frac{S^{*}}{q_{2}}\left(1-e^{(b-r)(T-t)} N\left(d_{1}\left(S^{*}\right)\right)\right)=0
\]

This is solved using Newton's algorithm for finding the root. We start by finding a first "seed" value \(S_{0}\). The next estimate of \(S_{i}\) is found by:
\[
S_{i+1}=S_{i}-\frac{g()}{g^{\prime}}
\]

At each step we need to evaluate \(g()\) and its derivative \(g^{\prime}()\).
\[
\begin{aligned}
& g(S)=S-X-c(S)-\frac{1}{q_{2}} S\left(1-e^{(b-r)(T-t)} N\left(d_{1}\right)\right) \\
& g^{\prime}(S)=\left(1-\frac{1}{q_{2}}\right)\left(1-e^{(b-r)(T-t)} N\left(d_{1}\right)\right)+\frac{1}{q_{2}}\left(e^{(b-r)(T-t)} n\left(d_{1}\right)\right) \frac{1}{\sigma \sqrt{T-t}}
\end{aligned}
\]
where \(c(S)\) is the Black Scholes value for commodities. Code 13.1 shows the implementation of this formula for the price of a call option.
\[
C(S, T)=\left\{\begin{array}{lll}
c(S, T)+A_{2}\left(\frac{S}{S^{*}}\right)^{q_{2}} & \text { if } & S<S^{*} \\
S-X & \text { if } & S \geq S^{*}
\end{array}\right.
\]
where
\[
\begin{aligned}
& q_{2}=\frac{1}{2}\left(-(N-1)+\sqrt{(N-1)^{2}+\frac{4 M}{K}}\right) \\
& A_{2}=\frac{S^{*}}{q_{2}}\left(1-e^{(b-r)(T-t)} N\left(d_{1}\left(S^{*}\right)\right)\right) \\
& M=\frac{2 r}{\sigma^{2}}, \quad N=\frac{2 b}{\sigma^{2}}, \quad K(T)=1-e^{-r(T-t)}
\end{aligned}
\]
and \(S^{*}\) solves
\[
S^{*}-X=c\left(S^{*}, T\right)+\frac{S^{*}}{q_{2}}\left(1-e^{(b-r)(T-t)} N\left(d_{1}\left(S^{*}\right)\right)\right)
\]

Formula 13.1: The functional form of the Barone Adesi Whaley approximation to the value of an American call

\section*{Exercise 22.}

The Barone-Adesi - Whaley insight can also be used to value a put option, by approximating the value of the early exercise premium. For a put option the approximation is
\[
\begin{aligned}
& P(S)=\begin{array}{ll}
p(S, T)+A_{1}\left(\frac{S}{S^{* *}}\right)^{q_{1}} & \text { if } \quad S>S^{* *} \\
X-S & \text { if } \quad S \leq S^{* *} \\
A_{1}=-\frac{S^{* *}}{q 1}\left(1-e^{(b-r)(T-t)} N\left(-d_{1}\left(S^{* *}\right)\right)\right.
\end{array}
\end{aligned}
\]

One again solves iteratively for \(S^{* *}\), for example by Newton's procedure, where now one would use
\[
\begin{aligned}
& g(S)=X-S-p(S)+\frac{S}{q_{1}}\left(1-e^{(b-r)(T-t)} N\left(-d_{1}\right)\right) \\
& g^{\prime}(S)=\left(\frac{1}{q_{1}}-1\right)\left(1-e^{(b-r)(T-t)} N\left(-d_{1}\right)\right)+\frac{1}{q_{1}} e^{(b-r)(T-t)} \frac{1}{\sigma \sqrt{T-t}} n\left(-d_{1}\right)
\end{aligned}
\]
1. Implement the calculation of the price of an American put option using the BAW approach.

\footnotetext{
\({ }^{1}\) The approximation is also discussed in Hull (2006).
}
```

\#include <cmath>
\#include <algorithm>
using namespace std;
\#include "normdist.h"
\#include "fin_recipes.h" // define other option pricing formulas
const double ACCURACY=1.0e-6;
double option_price_american_call_approximated_baw(const double\& S,
const double\& X,
const double\& r,
const double\& b,
const double\& sigma,
const double\& time) {
double sigma_sqr = sigma*sigma;
double time_sqrt = sqrt(time);
double nn = 2.0*b/sigma_sqr;
double m = 2.0*r/sigma_sqr;
double K = 1.0-exp(-r*time);
double q2 = (-(nn-1) +sqrt(pow ((nn-1),2.0)+(4*m/K)))*0.5;
double q2_inf = 0.5 * (-(nn-1) + sqrt(pow ((nn-1),2.0)+4.0*m)); // seed value from paper
double S_star_inf = X / (1.0 - 1.0/q2_inf);
double h2 = -(b*time+2.0*sigma*time_sqrt)*(X/(S_star_inf -X))
double S_seed = X + (S_star_inf -X)*(1.0-exp(h2));
int no_iterations=0; // iterate on S to find S_star, using Newton steps
double Si=S_seed;
double g=1;
double gprime=1.0;
while ((fabs(g) > ACCURACY)
\&\& (fabs(gprime)>ACCURACY) // to avoid exploding Newton's
\&\& (no_iterations++<500)
\&\& (Si>0.0)) {
double c = option_price_european_call_payout(Si,X,r,b,sigma,time);
double d1 = (log(Si/X)+(b+0.5*sigma_sqr)*time)/(sigma*time_sqrt)
g=(1.0-1.0/q2)*Si-X -c+(1.0/q2)*Si*exp((b-r)*time)*N(d1);
gprime=(1.0-1.0/q2)*(1.0-exp((b-r)*time)*N(d1))
+(1.0/q2)*exp((b-r)*time)*n(d1)*(1.0/(sigma*time_sqrt));
Si=Si-(g/gprime);
};
double S_star = 0;
if (fabs(g)>ACCURACY) { S_star = S_seed; } // did not converge
else { S_star = Si; };
double C=0;
double c = option_price_european_call_payout(S,X,r,b,sigma,time);
if (S>=S_star) {
C=S-X;
}
else {
double d1 = (log(S_star /X)+(b+0.5*sigma_sqr)*time)/(sigma*time_sqrt);
double A2 = (1.0-exp((b-r)*time)*N(d1))* (S_star/q2);
C=c+A2*pow((S/S_star),q2);
};
return max(C,c); // know value will never be less than BS value
};

```

C++ Code 13.1: Barone Adesi quadratic approximation to the price of a call option

Consider the following set of parameters, used as an example in the Barone-Adesi and Whaley (1987) paper: \(S=100, X=100, \sigma=0.20, r=0.08, b=-0.04\). Price a call option with time to maturity of of 3 months.
```

C++ program:
void test_baw_approximation_call(){
double S = 100; double X=100; double sigma = 0.20;
double r = 0.08; double b = -0.04; double time = 0.25;
cout <<" Call price using Barone-Adesi Whaley approximation = "
<< option_price_american_call_approximated_baw(S,X,r,b,sigma,time) << endl;
};
Output from C++ program:
Call price using Barone-Adesi Whaley approximation = 5.74339

```

Example 13.1: Example using the BAW approximation

\section*{Chapter 14}

\section*{Average, lookback and other exotic options}

We now look at a type of options that has received a lot of attention in later years. The distinguishing factor of these options is that they depend on the whole price path of the underlying security between today and the option maturity.

\subsection*{14.1 Bermudan options}

A Bermudan option is, as the name implies, \({ }^{1}\) a mix of an European and American option. It is a standard put or call option which can only be exercised at discrete dates throughout the life of the option. The simplest way to do the pricing of this is again the binomial approximation, but now, instead of checking at every node whether it is optimal to exercise early, only check at the nodes corresponding to the potential exercise times. Code 14.1 shows the calculation of the Bermudan price using binomial approximations. The times as which exercise can happen is passed as a vector argument to the routine, and in the binomial a list of which nodes exercise can happen is calculated and checked at every step.

\footnotetext{
\({ }^{1}\) Since Bermuda is somewhere between America and Europe...
}
```

\#include <cmath> // standard C mathematical library
\#include <algorithm> // defines the max() operator
\#include <vector>
using namespace std;
double option_price_put_bermudan_binomial(const double\& S, // spot price
const double\& X, // exercice price
const double\& r, // interest rate
const double\& q, // continous payout
const double\& sigma, // volatility
const double\& time, // time to maturity
const vector<double>\& potential_exercise_times,
const int\& steps) { // no steps in binomial tree
double delta_t=time/steps;
double R = exp(r*delta_t); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(delta_t)); // up movement
double uu = u*u;
double d = 1.0/u;
double p_up = (exp((r-q)*delta_t) - d) / (u-d);
double p_down = 1.0-p_up;
vector<double> prices(steps+1); // price of underlying
vector<double> put_values(steps+1); // value of corresponding put
vector<int> potential_exercise_steps; // create list of steps at which exercise may happen
for (int i=0;i<potential_exercise_times.size();++i){
double t = potential_exercise_times[i];
if ((}\textrm{t}>0.0)\&\&(\textrm{t}<\textrm{time}))
potential_exercise_steps.push_back(int(t/delta_t));
};
};
prices[0] = S*pow(d, steps); // fill in the endnodes.
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i-1];
for (int i=0; i<=steps; ++i) put_values[i] = max(0.0, (X-prices[i])); // put payoffs at maturity
for (int step=steps-1; step>=0; --step) {
bool check_exercise_this_step=false;
for (int j=0;j<potential_exercise_steps.size();++j){
if (step== potential_exercise_steps[j]) { check_exercise_this_step=true; };
};
for (int i=0; i<=step; ++i) {
put_values[i] = (p_up*put_values[i+1]+p_down*put_values[i])*Rinv;
prices[i] = d*
if (check_exercise_this_step) put_values[i] = max(put_values[i],X-prices[i]);
};
};
return put_values[0];
};

```

C++ Code 14.1: Binomial approximation to Bermudan put option
```

C++ program:
void test_bermudan_option(){
double S=80; double K=100; double r = 0.20;
double time = 1.0; double sigma = 0.25;
int steps = 500;
double q=0.0;
vector<double> potential_exercise_times; potential_exercise_times.push_back(0.25);
potential_exercise_times.push_back(0.5); potential_exercise_times.push_back(0.75);
cout << " Bermudan put price = "
<< option_price_put_bermudan_binomial(S,K,r,q,sigma,time,potential_exercise_times,steps)
<< endl;
};
Output from C++ program:
Bermudan put price = 15.9079

```

\subsection*{14.2 Asian options}

The payoff depends on the average of the underlying price. An average price call has payoff
\[
C_{T}=\max (0, \bar{S}-X)
\]
where \(\bar{S}\) is the average of the underlying in the period between \(t\) and \(T\).
Another Asian is the average strike call
\[
C_{T}=\max \left(0, S_{T}-\bar{S}\right)
\]

There are different types of Asians depending on how the average \(\bar{S}\) is calculated. For the case of \(S\) being lognormal and the average \(\bar{S}\) being a geometric average, there is an analytic formula due to Kemna and Vorst (1990). Hull (2006) also discusses this case. It turns out that one can calculate this option using the regular Black Scholes formula adjusting the volatility to \(\sigma / \sqrt{3}\) and the dividend yield to
\[
\frac{1}{2}\left(r+q+\frac{1}{6} \sigma^{2}\right)
\]
in the case of continous sampling of the underlying price distribution.
Code 14.2 shows the calculation of the analytical price of an Asian geometric average price call.
```

\#include <cmath>
using namespace std;
\#include "normdist.h" // normal distribution definitions
double
option_price_asian_geometric_average_price_call(const double\& S,
const double\& X,
const double\& r,
const double\& q,
const double\& sigma,
const double\& time){
double sigma_sqr = pow(sigma,2);
double adj_div_yield=0.5*(r+q+sigma_sqr);
double adj_sigma=sigma/sqrt(3.0);
double adj_sigma_sqr = pow(adj_sigma,2);
double time_sqrt = sqrt(time);
double d1 = (log(S/X) + (r-adj_div_yield + 0.5*adj_sigma_sqr)*time)/(adj_sigma*time_sqrt);
double d2 = d1-(adj_sigma*time_sqrt);
double call_price =S * exp(-adj_div_yield*time)* N(d1) - X * exp(-r*time) * N(d2);
return call_price;
};

```

C++ Code 14.2: Analytical price of an Asian geometric average price call
```

C++ program:
void test_analytical_geometric_average(){
double }\textrm{S}=100\mathrm{ ; double }\textrm{K}=100\mathrm{ ; double }\textrm{q}=0\mathrm{ ;
double r=0.06; double sigma=0.25; double time=1.0;
cout << " Analytical geometric average = "
<< option_price_asian_geometric_average_price_call(S,K,r,q,sigma,time)
<< endl;
};
Output from C++ program:
Analytical geometric average = 5.3562

```

\subsection*{14.3 Lookback options}

The payoff from lookback options depend on the maximum or minimum of the underlying achieved through the period. The payoff from the lookback call is the terminal price of the undelying less the minimum value
\[
C_{T}=\max \left(0, S_{T}-\min _{\tau \in[t, T]} S_{\tau}\right)
\]

For this particular option an analytical solution has been found, due to Goldman, Sosin, and Gatto (1979), which is shown in formula 14.1 and implemented in code 14.3
\[
\begin{aligned}
& C=S e^{-q(T-t)} N\left(a_{1}\right)-S e^{-q(T-t)} \frac{\sigma^{2}}{2(r-q)} N\left(-a_{1}\right)-S_{\text {min }} e^{-r(T-t)}\left(N\left(a_{2}\right)-\frac{\sigma^{2}}{2(r-q)} e^{Y_{1}} N(-a 3)\right) \\
& a_{1}=\frac{\ln \left(\frac{S}{S_{\text {min }}}\right)+\left(r-q+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& a_{2}=a_{1}-\sigma \sqrt{T-t} \\
& a_{3}=\frac{\ln \left(\frac{S}{S_{\text {min }}}\right)+\left(-r+q+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \\
& Y_{1}=\frac{2\left(r-q-\frac{1}{2} \sigma^{2}\right) \ln \left(\frac{S}{S_{\text {min }}}\right)}{\sigma^{2}}
\end{aligned}
\]

Formula 14.1: Analytical formula for a lookback call
```

\#include <cmath>
using namespace std;
\#include "normdist.h"
double option_price_european_lookback_call(const double\& S,
const double\& Smin,
const double\& r,
const double\& q,
const double\& sigma,
const double\& time){
if (r==q) return 0;
double sigma_sqr=sigma*sigma;
double time_sqrt = sqrt(time);
double a1 = (log(S/Smin) + (r-q+sigma_sqr/2.0)*time)/(sigma*time_sqrt);
double a2 = a1-sigma*time_sqrt;
double a3 = (log(S/Smin) + (-r+q+sigma_sqr/2.0)*time)/(sigma*time_sqrt);
double Y1 = 2.0 * (r-q-sigma_sqr/2.0)*log(S/Smin)/sigma_sqr;
return S * exp(-q*time)*N(a1)- S* exp(-q*time)*(sigma_sqr /(2.0*(r-q)))*N(-a1)
- Smin * exp(-r*time)*(N(a2)-(sigma_sqr/(2*(r-q)))*exp(Y1)*N(-a3))
};

```

C++ Code 14.3: Price of lookback call option
```

C++ program:
void test_exotics_lookback(){
double S=100; double Smin=S; double q = 0; double r = 0.06;
double sigma = 0.346; double time =1.0
cout << " Lookback call price = "
<< option_price_european_lookback_call(S,Smin,r,q,sigma,time) << endl;
};
Output from C++ program:
Lookback call price = 27.0713

```

\subsection*{14.4 Monte Carlo Pricing of options whose payoff depend on the whole price path}

Monte Carlo simulation can be used to price a lot of different options. The limitation is that the options should be European. American options can not be priced by simulation methods. In chapter 12 we looked at a general simulation case where we wrote a generic routine which we passed a payoff function to, and the payoff function was all that was necessary to define an option value. The payoff function in that case was a function of the terminal price of the underlying security. The only difference to the previous case is that we now have to generate a price sequence and write the terminal payoff of the derivative in terms of that, instead of just generating the terminal value of the underlying security from the lognormal assumption.

\subsection*{14.4.1 Generating a series of lognormally distributed variables}

Recall that one will generate lognormally distributed variables as
\[
S_{T}=S_{t} e^{\left(r-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma \sqrt{T-t} \tilde{x}}
\]
where the current time is \(t\) and terminal date is \(T\). To simulate a price sequence one splits this period into say \(N\) periods, each of length
\[
\Delta t=\frac{T-t}{N}
\]


Each step in the simulated price sequence is
\[
S_{t+\Delta t}=S_{t} e^{\left(r-\frac{1}{2} \sigma^{2}\right) \Delta+\sigma \sqrt{\Delta t} \tilde{x}}
\]

Code 14.4 shows how one would simulate a sequence of lognormally distributed variables.
```

\#include <cmath>
\#include <vector>
using namespace std;
\#include "normdist.h"
vector<double>
simulate_lognormally_distributed_sequence(const double\& S, // current value of underlying
const double\& r, // interest rate
const double\& sigma, // volatitily
const double\& time, // time to final date
const int\& no_steps){ // number of steps
vector<double> prices(no_steps);
double delta_t = time/no_steps;
double R = (r-0.5* pow(sigma,2))*delta_t;
double SD = sigma * sqrt(delta_t);
double S_t = S; // initialize at current price
for (int i=0; i<no_steps; ++i) {
S_t = S_t * exp(R + SD * random_normal());
prices[i]=S_t;
};
return prices;
};

```

C++ Code 14.4: Simulating a sequence of lognormally distributed variables
This code is then used in the generic routine to do calculations, as shown in code 14.5.
```

\#include <cmath>
using namespace std;
\#include "fin_recipes.h"
double
derivative_price_simulate_european_option_generic(const double\& S, // price of underlying
const double\& X, // used by user provided payoff function
const double\& r, // risk free interest rate
const double\& sigma, // volatility
const double\& time, // time to maturity
double payoff(const vector <double }>\& \mathrm{ prices,
const double\& X),
// user provided function
const int\& no_steps, // number of steps in generated price sequence
const int\& no_sims) { // number of simulations to run
double sum_payoffs=0;
for (int n=0; n<no_sims; n++) {
vector<double>prices = simulate_lognormally_distributed_sequence(S,r,sigma,time,no_steps);
sum_payoffs += payoff(prices,X);
};
return exp(-r*time) * (sum_payoffs/no_sims);
};

```

C++ Code 14.5: Generic routine for pricing European options which
```

\#include <cmath>
\#include <numeric>
\#include <vector>
using namespace std;
double payoff_arithmetric_average_call(const vector<double>\& prices, const double\& X) {
double sum=accumulate(prices.begin(), prices.end(),0.0);
double avg = sum/prices.size();
return max(0.0,avg-X);
};
double payoff_geometric_average_call(const vector<double > \& prices, const double\& X) {
double logsum=log(prices[0]);
for (unsigned i=1;i<prices.size();++i){ logsum += log(prices[i]); };
double avg = exp(logsum/prices.size());
return max(0.0,avg-X);
};

```

C++ Code 14.6: Payoff function for Asian call option

To price an option we are then only in need of a definition of a payoff function. We consider a couple of examples. One is the case of an Asian option, shown in code 14.6.
Another is the payoff for a lookback, shown in code 14.7
\#include <vector>
\#include <algorithm>
using namespace std;
double payoff_lookback_call(const vector<double \(>\&\) prices, const double\& unused_variable) \{ double \(m=*_{\text {min_element }}\) (prices.begin(), prices.end());
return prices.back()-m; // always positive or zero
\};
double payoff_lookback_put(const vector<double \(>\&\) prices, const double\& unused_variable) \{ double \(\mathrm{m}=\) *max_element \(^{\text {marices.begin(), prices.end()); }}\)
return \(m\)-prices.back(); // max is always larger or equal.
\};

C++ Code 14.7: Payoff function for lookback option

\subsection*{14.5 Control variate}

As discussed in chapter 12, a control variate is a price which we both have an analytical solution of and find the Monte Carlo price of. The differences between these two prices is a measure of the bias in the Monte Carlo estimate, and is used to adjust the Monte Carlo estimate of other derivatives priced using the same random sequence.
Code 14.8 shows the Black Scholes price used as a control variate. An alternative could have been the analytical lookback price, or the analytical solution for a geometric average price call shown earlier.
```

\#include "fin_recipes.h"
\#include <cmath>
using namespace std;
double
derivative_price_simulate_european_option_generic_with_control_variate(const double\& S,
const double\& X,
const double\& r,
const double\& sigma,
const double\& time,
double payoff(const vector<double >\& prices,
const double\& X),
const int\& no_steps,
const int\& no_sims) {
double c_bs = option_price_call_black_scholes(S,S,r,sigma,time);// price an at the money Black Scholes call
double sum_payoffs=0;
double sum_payoffs_bs=0;
for (int n=0; n<no_sims; n++) {
vector<double> prices = simulate_lognormally_distributed_sequence(S,r,sigma,time, no_steps);
double S1= prices.back();
sum_payoffs += payoff(prices,X);
sum_payoffs_bs += payoff_call(S1,S); // simulate at the money Black Scholes price
};
double c_sim = exp(-r*time) * (sum_payoffs/no_sims);
double c_bs_sim = exp(-r*time) * (sum_payoffs_bs/no_sims);
c_sim += (c_bs-c_bs_sim);
return c_sim;
};

```

C++ Code 14.8: Control Variate

References Exotic options are covered in Hull (2006). Rubinstein (1993) has an extensive discussion of analytical solutions to various exotic options.
```

C++ program:
void test_simulate_general_european(){
cout << "Testing general simulation of European options " << endl
double }\textrm{S}=100\mathrm{ ; double K=120; double r = 0.10;
double time = 1.0; double sigma = 0.25; int no_sims = 10000; int no_steps =250
double q=0;
cout << " simulated arithmetric average "
<< " S= " << S << " r= " << r << " price="
<< derivative_price_simulate_european_option_generic(S,K,r,sigma,time,
payoff_arithmetric_average_call,
no_steps,no_sims)
<< endl;
cout << " simulated geometric average = "
<< derivative_price_simulate_european_option_generic(S,K,r,sigma,time,
payoff_geometric_average_call,
no_steps,no_sims)
<< endl;
cout << " analytical lookback put = "
<< option_price_european_lookback_put(S,S,r,q,sigma,time)
<< endl;
cout << " simulated lookback put = "
<< derivative_price_simulate_european_option_generic(S,0,r,sigma,time,
payoff_lookback_put,
no_steps,no_sims)
<< endl;
cout << " analytical lookback call = '
<< option_price_european_lookback_call(S,S,r,q,sigma,time)
<< endl;
cout << " simulated lookback call = "
<< derivative_price_simulate_european_option_generic(S,0,r,sigma,time,
payoff_lookback_call,
no_steps,no_sims)
<< endl;
cout << " simulated lookback call using control variates = "
<< derivative_price_simulate_european_option_generic_with_control_variate(S,0,r,sigma,time,
payoff_lookback_call,
no_steps,no_sims)
<< endl;
};
Output from C++ program:
Testing general simulation of European options
simulated arithmetric average S= 100 r= 0.1 price=1.49696
simulated geometric average = 1.38017
analytical lookback put = 16.2665
simulated lookback put = 14.9846
analytical lookback call = 22.8089
simulated lookback call = 21.9336
simulated lookback call using control variates = 22.0685

```

\section*{Chapter 15}

\section*{Alternatives to the Black Scholes type option formula}

A large number of alternative formulations to the Black Scholes analysis has been proposed. Very few of them have seen any widespread use, but we will look at some of these alternatives.

\subsection*{15.1 Merton's Jump diffusion model.}

Merton has proposed a model where in addition to a Brownian Motion term, the price process of the underlying is allowed to have jumps. The risk of these jumps is assumed to not be priced.
In the following we look at an implementation of a special case of Merton's model, described in (Hull, 1993, pg 454 ), where the size of the jump has a normal distribution. \(\lambda\) and \(\kappa\) are parameters of the jump distribution. The price of an European call option is
\[
c=\sum_{n=0}^{\infty} \frac{e^{\lambda^{\prime} \tau}\left(\lambda^{\prime} \tau\right)^{n}}{n!} C_{B S}\left(S, X, r_{n}, \sigma_{n}^{2}, T-t\right)
\]
where
\[
\begin{aligned}
& \tau=T-t \\
& \lambda^{\prime}=\lambda(1+\kappa)
\end{aligned}
\]
\(C_{B S}(\cdot)\) is the Black Scholes formula, and
\[
\begin{aligned}
\sigma_{n}^{2} & =\sigma^{2}+\frac{n \delta^{2}}{\tau} \\
r_{n} & =r-\lambda \kappa+\frac{n \ln (1+\kappa)}{\tau}
\end{aligned}
\]

In implementing this formula, we need to terminate the infinite sum at some point. But since the factorial function is growing at a much higher rate than any other, that is no problem, terminating at about \(n=50\) should be on the conservative side. To avoid numerical difficulties, use the following method for calculation of
\[
\frac{e^{\lambda^{\prime} \tau}\left(\lambda^{\prime} \tau\right)^{n}}{n!}=\exp \left(\ln \left(\frac{e^{\lambda^{\prime} \tau}\left(\lambda^{\prime} \tau\right)^{n}}{n!}\right)\right)=\exp \left(-\lambda^{\prime} \tau+n \ln \left(\lambda^{\prime} \tau\right)-\sum_{i=1}^{n} \ln i\right)
\]
```

\#include <cmath>
\#include "fin_recipes.h"
double option_price_call_merton_jump_diffusion(const double\& S,
const double\& X,
const double\& r,
const double\& sigma
const double\& time_to_maturity,
const double\& lambda,
const double\& kappa,
const double\& delta) {
const int MAXN=50;
double tau=time_to_maturity;
double sigma_sqr = sigma*sigma
double delta_sqr = delta*delta;
double lambdaprime = lambda * (1+kappa);
double gamma = log(1+kappa);
double c = exp(-lambdaprime*tau)*option_price_call_black_scholes(S,X,r_lambda*kappa,sigma,tau);
double log_n = 0;
for (int n=1;n<=MAXN; ++n) {
log_n += log(double(n));
double sigma_n = sqrt(sigma_sqr+n*delta_sqr/tau)
double r_n = r-lambda*kappa+n*gamma/tau;
c += exp(-lambdaprime*tau+n*log(lambdaprime*tau) -log_n)*
option_price_call_black_scholes(S,X,r_n,sigma_n,tau);
};
return c;
};

```

C++ Code 15.1: Mertons jump diffusion formula
```

C++ program
\#include <cmath>
void test_merton_jump_diff_call(){
double S=100;
double K=100;
double r=0.05
double sigma=0.3;
double time_to_maturity=1;
double lambda=0.5;
double kappa=0.5;
double delta=0.5;
cout << " Merton Jump diffusion call = "
<< option_price_call_merton_jump_diffusion(S,K,r,sigma,time_to_maturity,lambda,kappa,delta)
<< endl;
};
Output from C++ program:
Merton Jump diffusion call = 23.2074

```

Example 15.1: Mertons Jump diffusion formula

\section*{Chapter 16}

\section*{Using a library for matrix algebra}

What really distinguishes \(\mathrm{C}++\) from standard C is the ability to extend the language by creating classes and collecting these classes into libraries. A library is a collection of classes and routines for one particular purpose. We have already seen this idea when creating the date and term_structure classes. However, one should not necessarily always go ahead and create such classes from scratch. It is just as well to use somebody else's class, as long as it is correct and well documented and fulfills a particular purpose.

\subsection*{16.1 An example matrix class}

Use Newmat as an example matrix class.

\subsection*{16.2 Finite Differences}

We use the case of implicit finite difference calculations to illustrate matrix calculations in action.
The method of choice for any engineer given a differential equation to solve is to numerically approximate it using a finite difference scheme, which is to approximate the continous differential equation with a discrete difference equation, and solve this difference equation.
In the following we implement the implicit finite differences.
Explicit finite differences was discussed earlier, we postponed the implicit case to now because it is much simplified by a matrix library.

\subsection*{16.3 European Options}

For European options we do not need to use the finite difference scheme, but we show how one would find the european price for comparison purposes.
```

\#include <cmath>
\#include "newmat.h" // definitions for newmat matrix library
using namespace NEWMAT
\#include <vector> // standard STL vector template
\#include <algorithm>
using namespace std;
double option_price_put_european_finite_diff_implicit(const double\& S,
const double\& K
const double\& r,
const double\& sigma,
const double\& time,
const int\& no_S_steps,
const int\& no_t_steps) {
double sigma_sqr = sigma*sigma;
// need no_S_steps to be even:
int M; if ((no_S_steps%2)==1) { M=no_S_steps+1; } else { M=no_S_steps; };
double delta_S = 2.0*S/M;
vector<double> S_values(M+1);
for (int m=0;m<=M;m++) { S_values[m] = m*delta_S; };
int N=no_t_steps;
double delta_t = time/N;
BandMatrix A(M+1,1,1); A=0.0
A.element(0,0) = 1.0;
for (int j=1;j<M;++j) {
A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j); // alj]
A.element (j,j) = 1.0 + delta_t* (r+sigma_sqr*j*j); // b/j];
A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j); // c/j];
};
A.element(M,M)=1.0;
ColumnVector B(M+1);
for (int m=0;m<=M;++m){ B.element(m) = max(0.0,K-S_values[m]); };
ColumnVector F=A.i()*B
for(int t=N-1;t>0;--t) {
B = F;
F}=\textrm{A}.\textrm{i}()*
};
return F.element(M/2);
};

```

C++ Code 16.1: Calculation of price of European put using implicit finite differences

\subsection*{16.4 American Options}

We now compare the American versions of the same algoritms, the only difference being the check for exercise at each point.
```

\#include <cmath>
\#include "newmat.h" // definitions for newmat matrix library
using namespace NEWMAT;
\#include <vector>
\#include <algorithm>
using namespace std;
double option_price_put_american_finite_diff_implicit(const double\& S,
const double\& K,
const double\& r,
const double\& sigma,
const double\& time,
const int\& no_S_steps,
const int\& no_t_steps) {
double sigma_sqr = sigma*sigma;
int M; // need no_S_steps to be even:
if ((no_S_steps%2)==1) { M=no_S_steps+1; } else { M=no_S_steps; }
double delta_S = 2.0*S/M;
double S_values[M+1];
for (int m=0;m<=M;m++) { S_values[m] = m*delta_S; };
int N=no_t_steps;
double delta_t = time/N;
BandMatrix A(M+1,1,1); A=0.0;
A.element(0,0) = 1.0;
for (int j=1;j<M;++j) {
A.element(j,j-1) = 0.5*j*delta_t*(r-sigma_sqr*j); // alj]
A.element(j,j) = 1.0 + delta_t*(r+sigma_sqr*j*j); // b/j];
A.element(j,j+1) = 0.5*j*delta_t*(-r-sigma_sqr*j); // c/j];
};
A.element(M,M)=1.0;
ColumnVector B(M+1);
for (int m=0;m<=M;++m){ B.element(m) = max(0.0,K-S_values[m]); };
ColumnVector F=A.i()*B;
for(int t=N-1;t>0;--t) {
B=F;
F}=\textrm{A}.\textrm{i}(\mp@subsup{)}{}{*}\textrm{B
for (int m=1;m<M;++m) { // now check for exercise
F.element(m) = max(F.element(m), K-S_values[m]);
};
};
return F.element(M/2);
};

```

C++ Code 16.2: Calculation of price of American put using implicit finite differences
```

C++ program:
void test_implicit_finite_differences()\{
double $S=50.0$
double $K=50.0$;
double $\mathrm{r}=0.1$;
double sigma $=0.4 ;$
double time $=0.5$
int no_S_steps=200;
int no_t_steps $=200$;
cout << " black scholes put price = " << option_price_put_black_scholes(S,K,r,sigma,time)<< endl;
cout \ll " implicit Euro put price $=$ ";
cout << option_price_put_european_finite_diff_implicit(S,K,r,sigma,time,no_S_steps,no_t_steps) << endl;
cout \ll " implicit American put price = ";
cout << option_price_put_american_finite_diff_implicit(S,K,r,sigma,time,no_S_steps,no_t_steps) << endl;
\}:
Output from C++ program:
black scholes put price $=4.35166$
implicit Euro put price $=4.34731$
implicit American put price $=4.60064$

```

\section*{Chapter 17}

\section*{The Mean Variance Frontier}

We now finally encounter a classical topic in finance, mean variance analysis. This has had to wait because we needed the tool of a linear algebra class before dealing with this.
Mean variance analysis concerns investors choices between portfolios of risky assets, and how an investor chooses portfolio weights. Let \(r_{p}\) be a portfolio return. We assume that investors preferences over portfolios \(p\) satisfy a mean variance utility representation, \(u(p)=u\left(E\left[r_{p}\right], \sigma\left(r_{p}\right)\right)\), with utility increasing in expected return \(\left(\partial u / \partial E\left[r_{p}\right]>0\right)\) and decreasing in variance \(\left(\partial u / \partial \operatorname{var}\left(r_{p}\right)<0\right)\). In this part we consider the representation of the portfolio opportunity set of such decision makers. There are a number of useful properties of this opportunity set which follows purely from the mathematical formulation of the optimization problem. It is these properties we focus on here.

\subsection*{17.1 Setup}

We assume there exists \(n \geq 2\) risky securities, with expected returns e
\[
\mathbf{e}=\left[\begin{array}{c}
E\left[r_{1}\right] \\
E\left[r_{2}\right] \\
\vdots \\
E\left[r_{n}\right]
\end{array}\right]
\]
and covariance matrix \(\mathbf{V}\) :
\[
\mathbf{V}=\left[\begin{array}{cccc}
\sigma\left(r_{1}, r_{1}\right) & \sigma\left(r_{1}, r_{2}\right) & \ldots & \\
\sigma\left(r_{2}, r_{1}\right) & \sigma\left(r_{2}, r_{2}\right) & \ldots & \\
\vdots & & & \\
\sigma\left(r_{n}, r_{1}\right) & & \cdots & \sigma\left(r_{n}, r_{n}\right)
\end{array}\right]
\]

The covariance matrix \(\mathbf{V}\) is assumed to be invertible.
A portfolio \(p\) is defined by a set of weights \(\mathbf{w}\) invested in the risky assets.
\[
\mathbf{w}=\left[\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\vdots \\
\omega_{n}
\end{array}\right]
\]
where \(w_{i}\) is the fraction of the investors wealth invested in asset \(i\). Note that the weights sum to one. The expected return on a portfolio is calculated as
\[
E\left[r_{p}\right]=\mathbf{w}^{\prime} \mathbf{e}
\]
and the variance of the portfolio is
\[
\sigma^{2}\left(r_{p}\right)=\mathbf{w}^{\prime} \mathbf{V} \mathbf{w}
\]

Code 17.1 implements these calculations.
```

\#include "newmat.h"
\#include <cmath>
using namespace std;
using namespace NEWMAT;
double mv_calculate_mean(const Matrix\& e, const Matrix\& w){
Matrix tmp = e.t()*w;
return tmp.element(0,0);
};
double mv_calculate_variance(const Matrix\& V, const Matrix\& w){
Matrix tmp = w.t()*V*w;
return tmp.element (0,0);
};
double mv_calculate_st_dev(const Matrix\& V, const Matrix\& w){
double var = mv_calculate_variance(V,w);
return sqrt(var);
};

```

C++ Code 17.1: Mean variance calculations
```

C++ program:
\#include "newmat.h"
\#include "mv_calc.h"
void test_mean_variance_calculations(){
cout << "Simple example of mean variance calculations " << endl;
Matrix e(2,1);
e.element(0,0)=0.05; e.element(1,0)=0.1;
Matrix V(2,2);
V.element(0,0)=1.0; V.element(1,0)=0.0;
V.element}(0,1)=0.0; V.element (1,1)=1.0
Matrix w(2,1);
w.element (0,0)=0.5;
w.element(1,0)=0.5;
cout << " mean " << mv_calculate_mean(e,w) << endl;
cout << " variance " << mv_calculate_variance(V,w) << endl;
cout << " stdev " << mv_calculate_st_dev(V,w) << endl;
};
Output from C++ program:
Simple example of mean variance calculations
mean 0.075
variance 0.5
stdev 0.707107

```

\subsection*{17.2 The minimum variance frontier}

A portfolio is a frontier portfolio if it minimizes the variance for a given expected return, that is, a frontier portfolio \(p\) solves
\[
\mathbf{w}_{p}=\underset{\mathbf{w}}{\arg \min } \frac{1}{2} \mathbf{w}^{\prime} \mathbf{V} \mathbf{w}
\]
subject to:
\[
\begin{aligned}
& \mathbf{w}^{\prime} \mathbf{e}=E\left[\tilde{r}_{p}\right] \\
& \mathbf{w}^{\prime} \mathbf{1}=1
\end{aligned}
\]

The set of all frontier portfolios is called the minimum variance frontier.

\subsection*{17.3 Calculation of frontier portfolios}

Proposition 1 If the matrix \(\mathbf{V}\) is full rank, and there are no restrictions on shortsales, the weights \(\mathbf{w}_{p}\) for a frontier portfolio \(p\) with mean \(E\left[\tilde{r}_{p}\right]\) can be found as
\[
\mathbf{w}_{p}=\mathbf{g}+\mathbf{h} E\left[r_{p}\right]
\]
where
\[
\begin{aligned}
& \mathbf{g}=\frac{1}{D}\left(B \mathbf{1}^{\prime}-A \mathbf{e}^{\prime}\right) \mathbf{V}^{-1} \\
& \mathbf{h}=\frac{1}{D}\left(C \mathbf{e}^{\prime}-A \mathbf{1}^{\prime}\right) \mathbf{V}^{-1} \\
& A=\mathbf{1}^{\prime} \mathbf{V}^{-1} \mathbf{e} \\
& B=\mathbf{e}^{\prime} \mathbf{V}^{-1} \mathbf{e} \\
& C=\mathbf{1}^{\prime} \mathbf{V}^{-1} \mathbf{1} \\
& \mathbf{A}=\left[\begin{array}{ll}
B & A \\
A & C
\end{array}\right] \\
& D=B C-A^{2}=|\mathbf{A}|
\end{aligned}
\]

\section*{Proof}

Any minimum variance portfolio solves the program
\[
\mathbf{w}_{p}=\underset{\mathbf{w}}{\arg \min } \frac{1}{2} \mathbf{w}^{\prime} \mathbf{V} \mathbf{w}
\]
subject to
\[
\begin{aligned}
& \mathbf{w}^{\prime} \mathbf{e}=E\left[\tilde{r}_{p}\right] \\
& \mathbf{w}^{\prime} \mathbf{1}=1
\end{aligned}
\]

Set up the Lagrangian corresponding to this problem
\[
L(\mathbf{w}, \lambda, \gamma \mid \mathbf{e}, \mathbf{V})=\frac{1}{2} \mathbf{w}^{\prime} \mathbf{V} \mathbf{w}-\lambda\left(E\left[\tilde{r}_{p}\right]-\mathbf{w}^{\prime} \mathbf{e}\right)-\gamma\left(1-\mathbf{w}^{\prime} \mathbf{1}\right)
\]

Differentiate
\[
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{w}}=\mathbf{w}^{\prime} \mathbf{V}-\lambda \mathbf{e}^{\prime}-\gamma \mathbf{1}^{\prime}=0 \\
& \frac{\partial L}{\partial \lambda}=E\left[r_{p}\right]-\mathbf{w}^{\prime} \mathbf{e}=0 \\
& \frac{\partial L}{\partial \gamma}=1-\mathbf{w}^{\prime} \mathbf{1}=0
\end{aligned}
\]

Rewrite conditions above as (note that this requires the invertibility of \(\mathbf{V}\).
\[
\begin{align*}
& \mathbf{w}^{\prime}=\lambda \mathbf{e}^{\prime} V^{-1}-\gamma \mathbf{1}^{\prime} \mathbf{V}^{-1}  \tag{17.1}\\
& \mathbf{w}^{\prime} \mathbf{e}=E\left[\tilde{r}_{p}\right]  \tag{17.2}\\
& \mathbf{w}^{\prime} \mathbf{1}=1 \tag{17.3}
\end{align*}
\]

Post-multiply the first equation with e and recognise the expression for \(E\left[r_{p}\right]\) in the second equation
\[
\mathbf{w}^{\prime} \mathbf{e}=E\left[r_{p}\right]=\lambda \mathbf{e}^{\prime} \mathbf{V}^{-1} \mathbf{e}+\gamma \mathbf{1}^{\prime} \mathbf{V}^{-1} \mathbf{e}
\]

Similarly post-multiply the first equation with 1 and recognise the expression for 1 in the second equation
\[
\mathbf{w}^{\prime} \mathbf{1}=1=\lambda \mathbf{e}^{\prime} \mathbf{V}^{-1} \mathbf{1}+\gamma \mathbf{1}^{\prime} \mathbf{V}^{-1} \mathbf{1}
\]

With the definitions of \(A, B, C\) and \(D\) above, this becomes the following system of equations
\[
\left\{\begin{array}{ll}
E\left[r_{p}\right] & =\lambda B+\gamma A \\
1 & =\lambda A+\gamma C
\end{array}\right\}
\]

Solving for \(\lambda\) and \(\gamma\), get
\[
\begin{aligned}
& \gamma=\frac{B-A E\left[r_{p}\right]}{D} \\
& \lambda=\frac{C E\left[r_{p}\right]-A}{D}
\end{aligned}
\]

Plug in expressions for \(\lambda\) and \(\gamma\) into equation (17.1) above, and get
\[
\mathbf{w}^{\prime}=\frac{1}{D}\left(B \mathbf{1}^{\prime}-A \mathbf{e}^{\prime}\right) \mathbf{V}^{-1}+\frac{1}{D}\left(C \mathbf{e}^{\prime}-A \mathbf{1}^{\prime}\right) \mathbf{V}^{-1} E\left[r_{p}\right]=\mathbf{g}+\mathbf{h} E\left[r_{p}\right]
\]

Note that the portfolio defined by weights \(\mathbf{g}\) is a portfolio with expected return 0 , and that the portfolio defined by weights \((\mathbf{g}+\mathbf{h})\) is a portfolio with expected return 1. Note also the useful property that \(\mathbf{g} \mathbf{1}^{\prime}=1\), and \(\mathbf{h} \mathbf{1}^{\prime}=0\).
Code 17.2 does this calculation.
```

\#include "newmat.h"
using namespace NEWMAT;
ReturnMatrix mv_calculate_portfolio_given_mean_unconstrained(const Matrix\& e,
const Matrix\& V,
const double\& r){
int no_assets=e.Nrows();
Matrix ones = Matrix(no_assets,1); for (int i=0;i<no_assets;++i){ ones.element(i,0) = 1; };
Matrix Vinv = V.i(); // inverse of V
Matrix A = (ones.t()*Vinv*e); double a = A.element(0,0);
Matrix B = e.t()*Vinv*e; double b = B.element(0,0);
Matrix C = ones.t()*Vinv*ones; double c = C.element(0,0);
Matrix D = B*C - A*A; double d = D.element(0,0);
Matrix Vinv1=Vinv*ones;
Matrix Vinve=Vinv*e;
Matrix g = (Vinv1*b - Vinve*a)*(1.0/d);
Matrix h = (Vinve*c - Vinv1*a)*(1.0/d);
Matrix w = g + h*r;
w.Release();
return w;
};

```

C++ Code 17.2: Calculating the unconstrained frontier portfolio given an expected return

\subsection*{17.4 The global minimum variance portfolio}

The portfolio that minimizes variance regardless of expected return is called the global minimum variance portfolio. Let \(m v p\) be the global minimum variance portfolio.
```

C++ program:
\#include "mv_calc.h"
void test_mean_variance_portfolio_calculation(){
cout << "Testing portfolio calculation " << endl;
Matrix e(2,1);
e.element(0,0)=0.05; e.element(1,0)=0.1;
Matrix V(2,2);
V.element (0,0)=1.0; V.element (1,0)=0.0;
V.element (0,1)=0.0; V.element(1,1)=1.0;
double r=0.075;
Matrix w = mv_calculate_portfolio_given_mean_unconstrained(e,V,r);
cout << " suggested portfolio:";
cout << " w1 = " << w.element(0,0) << " w2 = " << w.element(1,0) << endl;
};
Output from C++ program:
Testing portfolio calculation
suggested portfolio: w1 = 0.5 w2 = 0.5

```

Proposition 2 (Global Minimum Variance Portfolio) The global minimum variance portfolio has weights
\[
\mathbf{w}_{m v p}^{\prime}=\left(\mathbf{1}^{\prime} \mathbf{V}^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} \mathbf{V}^{-1}=\frac{1}{C} \mathbf{1}^{\prime} \mathbf{V}^{-1}
\]
expected return \(E\left[r_{m v p}\right]=\frac{A}{C}\) and variance \(\operatorname{var}\left(r_{m v p}\right)=\frac{1}{C}\).


\subsection*{17.5 Efficient portfolios}

Portfolios on the minimum variance frontier with expected returns higher than or equal to \(E\left[r_{m v p}\right]\) are called efficient portfolios.


\subsection*{17.6 The zero beta portfolio}

Proposition 3 For any portfolio \(p\) on the frontier, there is a frontier portfolio \(z c(p)\) satisfying
\[
\operatorname{cov}\left(r_{z c(p)}, r_{p}\right)=0
\]

This portfolio is called the zero beta portfolio relative to \(p\). The zero beta portfolio \(z b(p)\) has return
\[
E\left[r_{z c(p)}\right]=\frac{A}{C}-\frac{\frac{D}{C^{2}}}{E\left[r_{p}\right]-\frac{A}{C}}
\]


Note that if \(p\) is an efficient portfolio on the mean variance frontier then \(z c(p)\) is inefficient. Conversely, if \(p\) is inefficient \(z c(p)\) is efficient.


\subsection*{17.7 Allowing for a riskless asset.}

Suppose have \(N\) risky assets with weights \(\mathbf{w}\) and one riskless assets with return \(r_{f}\).
Intuitively, the return on a portfolio with a mix of risky and risky assets can be written as
\[
E\left[r_{p}\right]=\text { weight in risky } \times \text { return risky }+ \text { weight riskless } \times r_{f}
\]
which in vector form is:
\[
E\left[r_{p}\right]=\mathbf{w}^{\prime} \mathbf{e}+\left(1-\mathbf{w}^{\prime} \mathbf{1}\right) r_{f}
\]

Proposition 4 An efficient portfolio in the presence of a riskless asset has the weights
\[
\mathbf{w}_{p}=\mathbf{V}^{-1}\left(\mathbf{e}-\mathbf{1} r_{f}\right) \frac{E\left[r_{p}\right]-r_{f}}{H}
\]
where
\[
H=\left(\mathbf{e}-\mathbf{1} r_{f}\right)^{\prime} \mathbf{V}^{-1}\left(\mathbf{e}-\mathbf{1} r_{f}\right)
\]

The variance of the efficient portfolio is
\[
\sigma^{2}\left(r_{p}\right)=\frac{\left(E\left[r_{p}\right]-r_{f}\right)^{2}}{H}
\]

Note that standard deviation is a linear function of \(E\left[r_{p}\right]\). The efficient set is a line in mean-standard deviation space.

\subsection*{17.8 Efficient sets with risk free assets.}

Suppose \(r_{f}<\frac{A}{C}\). Then the efficient set is the line from \(\left(0, r_{f}\right)\) through tangency on the efficient set of risky assets.


Suppose \(r_{f}>\frac{A}{C}\). Then the efficient set is the two half-lines starting from \(\left(0, r_{f}\right)\).


If \(r_{f}=\frac{A}{C}\), the weight in the risk free asset is one. The risky portfolio is an zero investment portfolio. The efficient set consists of two asymptotes toward the efficient set of risky assets.


\subsection*{17.9 The Sharpe Ratio}

The Sharpe ratio of a given portfolio \(p\) is defined as
\[
S_{p}=\frac{E\left[r_{p}\right]-r_{f}}{\sigma\left(r_{p}\right)}
\]

The Sharpe ratio \(S_{p}\) of a portfolio \(p\) is the slope of the line in mean-standard deviations space from the risk free rate through \(p\). Note that in the case with a risk free asset, the tangency portfolio has the maximal Sharpe Ratio on the efficient frontier.

\subsection*{17.10 Short-sale constraints}

So far the analysis has put no restrictions on the set of weights \(w_{p}\) that defines the minimum variance frontier. For practical applications, existence of negative weights is problematic, since this involves selling securities short.
This has led to the investigation of restricted mean variance frontiers, where the weights are constrained to be non-negative.

Definition \(1 A\) short sale resctricted minimum variance portfolio \(p\) solves
\[
\mathbf{w}_{p}=\underset{\mathbf{w}}{\arg \min } \frac{1}{2} \mathbf{w}^{\prime} \mathbf{V} \mathbf{w}
\]
subject to
\[
\begin{aligned}
& \mathbf{w}^{\prime} \mathbf{e}=E\left[\tilde{r}_{p}\right] \\
& \mathbf{w}^{\prime} \mathbf{1}=1 \\
& \mathbf{w}^{\prime} \geq \mathbf{0}
\end{aligned}
\]

Such short sale resctricted minimum variance portfolio portfolios are much harder to deal with analytically, since they do not admit a general solution, one rather has to investigate the Kuhn-Tucker conditions for corner solutions etc. To deal with this problem in practice one will use a subroutine for solving constrained optimization problems.

Readings and Sources The classical sources for this material are Merton (1972) and Roll (1977a). (Huang and Litzenberger, 1988, Ch 3) has a good textbook discussion of it.

\section*{Chapter 18}

\section*{Pricing of bond options, basic models}

The area of fixed income securities is one where a lot of work is being done in creating advanced mathematical models for pricing of financial securities, in particular fixed income derivatives. The focus of the modelling in this area is on modelling the term structure of interest rates and its evolution over time, which is then used to price both bonds and fixed income derivatives. However, in some cases one does not need the machinery of term structure modelling which we'll look at in later chapters, and price derivatives by modelling the evolution of the bond price directly.
Specifically, suppose that the price of a Bond follows a Geometric Brownian Motion process, just like the case we have studied before. This is not a particularly realistic assumption for the long term behaviour of bond prices, since any bond price converges to the bond face value at the maturity of the bond. The Geometric Brownian motion may be OK for the case of short term options on long term bonds.

\subsection*{18.1 Black Scholes bond option pricing}

Given the assumed Brownian Motion process, prices of European Bond Options can be found using the usual Black Scholes formula, as shown in code 18.1 for a zero coupon bond and code 18.2 for the case of an option on a coupon bond.
```

\#include <cmath>
\#include "normdist.h"
double bond_option_price_put_zero_black_scholes(const double\& B,
const double\& X,
const double\& r,
const double\& sigma,
const double\& time){
double time_sqrt = sqrt(time);
double d1 = (log(B/X)+r*time)}/(\mathrm{ sigma*time_sqrt) + 0.5*sigma*time_sqrt;
double d2 = d1-(sigma*time_sqrt);
double p = X * exp(-r*time) * N(-d2) - B * N(-d1);
return p;
};

```

C++ Code 18.1: Black scholes price for European call option on zero coupon bond
```

\#include <cmath>
\#include <vector>
using namespace std;
\#include "normdist.h"
\#include "fin_recipes.h"
double bond_option_price_put_coupon_bond_black_scholes(const double\& B,
const double\& X,
const double\& r
const double\& sigma,
const double\& time
const vector<double> coupon_times,
const vector<double> coupon_amounts){
double adjusted_B=B;
for (unsigned int i=0;i<coupon_times.size();i++) {
if (coupon_times[i]<=time) {
adjusted_B -= coupon_amounts[i] * exp(-r*coupon_times[i]);
};
};
return bond_option_price_put_zero_black_scholes(adjusted_B,X,r,sigma,time);
};

```

C++ Code 18.2: Black scholes price for European call option on coupon bond

\subsection*{18.2 Binomial bond option pricing}

Since we are in the case of geometric Brownian motion, the usual binomial approximation can be used to price American options, where the bond is the underlying security. Code 18.3 shows the calculation of a put price
```

\#include <cmath>
\#include <algorithm> // defining the max() operator
\#include <vector> // STL vector templates
using namespace std;
double bond_option_price_put_american_binomial(const double\& B, // Bond price
const double\& K, // exercise price
const double\& r, // interest rate
const double\& sigma, // volatility
const double\& t, // time to maturity
const int\& steps){ // no steps in binomial tree
double R = exp(r*(t/steps)); // interest rate for each step
double Rinv = 1.0/R; // inverse of interest rate
double u = exp(sigma*sqrt(t/steps)); // up movement
double uu = u*u;
double d = 1.0/u;
double p_up = (R-d)/(u-d);
double p_down = 1.0-p_up;
vector<double> prices(steps +1); // price of underlying
vector<double> put_values(steps+1); // value of corresponding put
prices[0] = B* pow(d, steps); // fill in the endnodes.
for (int i=1; i<=steps; ++i) prices[i] = uu*prices[i-1];
for (int i=0; i<=steps; ++i) put_values[i] = max(0.0, (K-prices[i])); // put payoffs at maturity
for (int step=steps-1; step>=0; --step) {
for (int i=0;i<=step; ++i) {
put_values[i] = (p_up*put_values[i+1]+p_down*put_values[i])*Rinv;
prices[i] = d*prices[i+1];
put_values[i] = max(put_values[i],(K-prices[i])); // check for exercise
};
};
return put_values[0];
};

```

C++ Code 18.3: Binomial approximation to american bond option price
```

C++ program:
void test_bond_option_gbm_pricing(){
double B=100
double K=100;
double r=0.05
double sigma=0.1;
double time=1;
cout << " zero coupon put option price = "
<< bond_option_price_put_zero_black_scholes(B,K,r,sigma,time)}<<< endl
vector<double> coupon_times; coupon_times.push_back(0.5);
vector<double> coupons; coupons.push_back(1);
cout << " coupon bond put option price = "
<< bond_option_price_put_coupon_bond_black_scholes(B,K,r,sigma,time,coupon_times,coupons);
cout <<< endl
int steps=100;
cout << " zero coupon american put option price, binomial = "
<< bond_option_price_put_american_binomial(B,K,r,sigma,time,steps) << endl;
};
Output from C++ program:
zero coupon put option price = 1.92791
coupon bond put option price = 2.22852
zero coupon american put option price, binomial = 2.43282

```

\section*{Chapter 19}

\section*{Credit risk}

Option pricing has obvious applications to the pricing of risky bonds.

\subsection*{19.1 The Merton Model}

This builds on the Black and Scholes (1973) and Merton (1973) framework to find the value of the debt issued by the firm. The ideas were already in Black and Scholes, who discussed the view of the firm as a call option.
Assume debt structure: There is a single debt issue. Debt is issued as a zero coupon bond. The bond is due on a given date \(T\).
Assuming the firm value \(V\) follows the usual Brownian motion proces, debt is found as a closed form solution, similar in structure to the Black Scholes equation for a call option.
Easiest seen from the interpretation of firm debt as the price of risk free debt, minus the value of a put option.
Price debt by the price \(B\) of risk free debt, and then subtract the price of the put, using the Black Scholes formula.
The Black Scholes formula for a call option is
\[
c=S \cdot N\left(d_{1}\right)-K \cdot e^{-r(T-t)} N\left(d_{2}\right)
\]
where
\[
\begin{aligned}
& d_{1}=\frac{\ln \left(\frac{S}{K}\right)+\left(r+\frac{1}{2} \sigma\right)(T-t)}{\sigma \sqrt{T-t}} \\
& d_{2}=d_{1}-\sigma \sqrt{T-t}
\end{aligned}
\]
\[
N(\cdot)=\text { The cumulative normal distribution }
\]
\[
p=K e^{-r(T-t)} N\left(-d_{2}\right)-S N\left(-d_{1}\right)
\]

In the context here, reinterpret \(S\) as \(V\), firm value. The put is priced as
\[
p=K e^{-r(T-t)} N\left(-d_{2}\right)-V_{t} N\left(-d_{1}\right)
\]
where
\[
d_{1}=\frac{\ln \left(\frac{V_{t}}{K}\right)+\left(r+\frac{1}{2} \sigma\right)(T-t)}{\sigma \sqrt{T-t}}
\]

Note on interpretation: The spread between risky and risk free debt determined solely by the price of the put option.

\subsection*{19.2 Issues in implementation}
- Firm value and firm volatility is unobservable.
- The model assumes a simple debt structure, most debt structures tend to be more complex.

The current value of the firm \(V=100\). The firm has issued one bond with face value 90 , which is due to be paid one year from now. The risk free interest rate is \(5 \%\) and the volatility of the firms value is \(25 \%\). Determine the value of the debt.
```

C++ program:
\#include "fin_recipes.h"
\#include <cmath>
void test_credit_risk(){
cout << " Credit Risk Calculation " << endl;
double }\textrm{V}=100\mathrm{ ; double }\textrm{F}=90\mathrm{ ; double }\textrm{r}=0.05\mathrm{ ; double }\textrm{T}=1\mathrm{ ; double sigma=0.25;
double p = option_price_put_black_scholes(V,F,r,sigma,T);
cout << " Debt value = " << exp(-r*T)*F - p << endl;
};
Output from C++ program:
Credit Risk Calculation
Debt value = 81.8592

```

\section*{Chapter 20}

\section*{Term Structure Models}

We now expand on the analysis of the term structure in chapter 4. As shown there, the term structure is best viewed as an abstract class providing, as functions of term to maturity, the prices of zero coupon bonds (discount factors), yield on zero coupon bonds (spot rates) or forward rates. In the earlier case we considered two particular implementations of the term structure: A flat term structure or a term structure estimated by linear interpolations of spot rates. We now consider a number of alternative term structure models. The focus of this chapter is empirical, we consider ways in which on one can specify a term structure in a lower dimensional way. Essentially we are looking at ways of doing curve-fitting, of estimating a nonlinear relationship between time and discount factors, or between time and spot rates. Since the relationship is nonlinear, this is a nontrivial problem. One has to choose a functional form to estimate, which allows enough flexibility to "fit" the term structure, but not so flexible that it violates the economic restrictions on the term structure. Here are some considerations.
- Discount factors must be positive. \(\left(d_{t}>0\right)\). This is because they are prices, negative prices allow for abritrage.
- Discount factors must be a nonincreasing function of time. \(\left(d_{t} \geq d_{t+k} \forall k>0\right)\). Again, this is to avoid arbitrage.
- Nominal interest rates can not be negative. \(\left(r_{t} \geq 0 \forall t\right)\) This is another implication of the absence of arbitrage opportunities.
- Both discount factors and interest rates must be smooth functions of time.
- The value of a payment today is the payment today. \(d_{0}=1\).

A number of alternative ways of estimating the term structure has been considered. Some are purely used as interpolation functions, while others are fully specified, dynamic term structure models. Of the models that follow, the approximating function proposed in Nelson and Siegel (1987) and the cubic spline used by e.g. McCulloch (1971) are examples of the first kind, and the term structure models of Cox, Ingersoll, and Ross (1985) and Vasicek (1977) are examples of the second kind.
What is the typical use of the functions we consider here? One starts with a set of fixed income securities, typically a set of treasury bonds. Observing the prices of these bonds, one asks: What set of discount factors is most likely to have generated the observed prices. Or: What term structure approximations provides the "best fit" to this set of observed bond prices.

\subsection*{20.1 The Nelson Siegel term structure approximation}

Proposed by Nelson and Siegel (1987).
\[
r(t)=\beta_{0}+\left(\beta_{1}+\beta_{2}\right)\left[\frac{1-e^{-\frac{t}{\lambda}}}{\frac{t}{\lambda}}\right]+\beta_{2}\left[e^{-\frac{t}{\lambda}}\right]
\]

The implementation of this calculation is shown in 20.1
This is wrapped in a term structure class as shown in codes 20.2 and 20.3.

\subsection*{20.2 Bliss}

In Bliss (1989) a further development of Nelson and Siegel (1987) was proposed.
\[
r(t)=\gamma_{0}+\gamma_{1}\left[\frac{1-e^{-\frac{t}{\lambda_{1}}}}{\frac{t}{\lambda_{1}}}\right]+\gamma_{2}\left[\frac{1-e^{-\frac{t}{\lambda_{2}}}}{\frac{t}{\lambda_{2}}}-e^{-\frac{t}{\lambda_{2}}}\right]
\]
```

\#include <cmath>
using namespace std;
double term_structure_yield_nelson_siegel(const double\& t,
const double\& beta0,
const double\& beta1,
const double\& beta2,
const double\& lambda) {
if (t==0.0) return beta0;
double tl = t/lambda;
double r = beta 0 + (beta1+beta2) * ((1-\operatorname{exp}(-t\textrm{l}))/\textrm{tl})+\operatorname{beta2 * exp(-tl);}
return r;
};

```

C++ Code 20.1: Calculation of the Nelson and Siegel (1987) term structure model
```

class term_structure_class_nelson_siegel : public term_structure_class {
private:
double beta0_, beta1_, beta2_, lambda_;
public:
term_structure_class_nelson_siegel(const double\& beta0,
const double\& beta1
const double\& beta2,
const double\& lambda)
virtual double yield(const double\& T) const;
};

```

C++ Code 20.2: Header file defining a term structure class wrapper for the Nelson Siegel approximation

This has 5 parameters to estimate: \(\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \lambda_{1}, \lambda_{2}\right\}\).
```

\#include "fin_recipes.h"
term_structure_class_nelson_siegel::term_structure_class_nelson_siegel(const double\& b0,
const double\& b1,
const double\& b2,
const double\& l) {
beta0_=b0; beta1_=b1; beta2_=b2; lambda_=l;
};
term_structure_class_nelson_siegel:: _term_structure_class_nelson_siegel(){};
double term_structure_class_nelson_siegel::yield(const double\& t) const {
if (}\textrm{t}<=0.0\mathrm{) return beta0_;
return term_structure_yield_nelson_siegel(t,beta0_,beta1_,beta2_,lambda_);
};

```

C++ Code 20.3: Defining a term structure class wrapper for the Nelson Siegel approximation
```

C++ program:
void test_term_structure_nelson_siegel(){
double beta0=0.01; double beta1=0.01; double beta2=0.01; double lambda=5.0;
double t=1.0;
cout << "Example calculations using the Nelson Siegel term structure approximation" << endl;
cout << " direct calculation, yield = "
<< term_structure_yield_nelson_siegel(t,beta0,beta1,beta2,lambda)}<<< endl
term_structure_class_nelson_siegel ns(beta0,beta1,beta2,lambda);
cout << " using a term structure class" << endl;
cout << " yield (t=1) = " << ns.yield(t) << endl;
cout <<" discount factor (t=1) = " << ns.discount_factor(t) << endl;
cout << " forward rate (t1=1, t2=2) = " << ns.forward_rate(1,2) << endl
};
Output from C++ program:
Example calculations using the Nelson Siegel term structure approximation
direct calculation, yield = 0.0363142
using a term structure class
yield (t=1) = 0.0363142
discount factor (}t=1\mathrm{) = 0.964337
forward rate (t1=1, t2=2) = 0.0300602

```

\subsection*{20.3 Cubic spline.}

Cubic splines are well known for their good interpolation behaviour. The cubic spline parameterization was first used by McCulloch (1971) to estimate the nominal term structure. He later added taxes in McCulloch (1975). The cubic spline was also used by Litzenberger and Rolfo (1984). In this case the qubic spline is used to approximate the discount factor, not the yields.
\[
d(t)=1+b_{1} t+c_{1} t^{2}+d_{1} t^{3}+\sum_{j=1}^{K} F_{j}\left(t-t_{j}\right)^{3} 1_{\left\{t<t_{j}\right\}}
\]

Here \(1_{\{A\}}\) is the indicator function for an event \(A\), and we have \(K\) knots.
To estimate this we need to find the \(3+K\) parameters:
\[
\left\{b_{1}, c_{1}, d_{1}, F_{1}, \cdots, F_{K}\right\}
\]

If the spline knots are known, this is a simple linear regression. Code ?? shows the calculation using this approximation.
```

\#include <cmath>
\#include <vector>
using namespace std;
double term_structure_discount_factor_cubic_spline(const double\& t,
const double\& b1,
const double\& c1,
const double\& d1,
const vector<double>\& f,
const vector<double>\& knots){
double d = 1.0 + b1*t + c1*(pow (t,2)) + d1* (pow (t,3));
for (int i=0;i<knots.size();i++) {
if (t > = knots[i]) { d += f[i] * (pow((t-knots[i]),3)); }
else { break; };
};
return d;
};

```

C++ Code 20.4: Approximating a discount function using a cubic spline

Codes 20.5 and 20.6 wraps this calculations into a term structure class.
```

\#include "fin_recipes.h"
\#include <vector>
using namespace std;
class term_structure_class_cubic_spline : public term_structure_class {
private:
double b_; double c_; double d_;
vector<double> f_; vector<double> knots_;
public:
term_structure_class_cubic_spline(const double\& b, const double\& c, const double\& d,
const vector <double > \& f, const vector <double > \& knots);
virtual ~term_structure_class_cubic_spline();
virtual double discount_factor(const double\& T) const;
};

```

C++ Code 20.5: Term structure class wrapping the cubic spline approximation
```

\#include "fin_recipes.h"
term_structure_class_cubic_spline::
term_structure_class_cubic_spline (const double\& b, const double\& c, const double\& d,
const vector <double >\& f, const vector < double > \& knots) {
b_}=\textrm{b};\quad\mp@subsup{c}{-}{\prime}=\textrm{c};\quad\mp@subsup{\textrm{d}}{-}{\prime}=\textrm{d}; f_.clear(); knots_.clear()
if (f.size()!=knots.size()){ return; };
for (int i=0;i<f.size();++i) {
f_.push_back(f[i]);
knots_.push_back(knots[i]);
};
};
term_structure_class_cubic_spline:: term_structure_class_cubic_spline(){
f_.clear();
knots_.clear();
};
double term_structure_class_cubic_spline::discount_factor(const double\& T) const {
return term_structure_discount_factor_cubic_spline(T,\mp@subsup{b}{_}{\prime},\mp@subsup{c}{-}{\prime},\mp@subsup{d}{-}{\prime},\mp@subsup{f}{-}{\prime},knots_);
};

```

C++ Code 20.6: Term structure class wrapping the cubic spline approximation
```

C++ program:
void test_term_structure_cubic_spline(){
cout << "Example term structure calculations using a cubic spline " << endl;
double }b=0.1\mathrm{ ; double }c=0.1; double d=-0.1
vector<double> f; f.push_back(0.01); f.push_back(0.01); f.push_back(-0.01);
vector<double> knots; knots.push_back(2); knots.push_back(7); knots.push_back(12);
cout << " direct calculation, discount factor (t=1) "
<< term_structure_discount_factor_cubic_spline(1,b,c,d,f,knots) << endl;
cout << " Using a term structure class " << endl;
term_structure_class_cubic_spline cs(b,c,d,f,knots);
cout << " yield (t=1) = " << cs.yield(1) << endl;
cout << " discount factor (t=1) = " << cs.discount_factor(1) << endl;
cout << " forward (t1=1, t2=2) = " << cs.forward_rate(1,2) << endl;
};
Output from C++ program:
Example term structure calculations using a cubic spline
direct calculation, discount factor (t=1) 1.1
Using a term structure class
yield (t=1) = -0.0953102
discount factor (t=1) = 1.1
forward (t1=1, t2=2) = 0.318454

```

\subsection*{20.4 Cox Ingersoll Ross.}

The Cox et al. (1985) model is the most well-known example of a continous time, general equilibrium model of the term structure.
The term structure model described in Cox et al. (1985) is one of the most commonly used in academic work, because it is a general equilibrium model that still is "simple enough" to let us find closed form expressions for derivative securities.

The short interest rate.
\[
d r(t)=\kappa(\theta-r(t)) d t+\sigma \sqrt{r(t)} d W
\]

The discount factor for a payment at time T .
\[
d(t, T)=A(t, T) e^{-B(t, T) r(t)}
\]
where
\[
\begin{aligned}
& \gamma=\sqrt{(\kappa+\lambda)^{2}+2 \sigma^{2}} \\
& A(t, T)=\left[\frac{2 \gamma e^{\frac{1}{2}(\kappa+\lambda+\gamma)(T-t)}}{(\gamma+\kappa+\lambda)\left(e^{\lambda(T-t)}-1\right)+2 \gamma}\right]^{\frac{2 \kappa \theta}{\sigma^{2}}}
\end{aligned}
\]
and
\[
B(t, T)=\frac{2 e^{\gamma(T-t)}-1}{(\gamma+\kappa+\lambda)\left(e^{\lambda(T-t)}-1\right)+2 \gamma}
\]

Five parameters: \(r\), the short term interest rate, \(\kappa\), the mean reversion parameter, \(\lambda\), the "market" risk parameter, \(\theta\) the long-run mean of the process and \(\sigma\), the variance rate of the process.
```

\#include <cmath>
using namespace std;
double term_structure_discount_factor_cir(const double\& t,
const double\& r,
const double\& kappa,
const double\& lambda,
const double\& theta,
const double\& sigma){
double sigma_sqr=pow(sigma,2);
double gamma = sqrt(pow((kappa+lambda),2)+2.0*sigma_sqr);
double denum = (gamma+kappa+lambda)* (exp(gamma*t)-1)+2*gamma;
double p=2*kappa*theta/sigma_sqr;
double enum1= 2*gamma*exp(0.5*(kappa+lambda+gamma)*t);
double A = pow((enum1/denum),p);
double B = (2*(exp(gamma*t)-1))/denum;
double dfact=A*}\operatorname{exp}(-\mp@subsup{B}{}{*}r)
return dfact;
};

```

C++ Code 20.7: Calculation of the discount factor using the Cox et al. (1985) model
```

\#include "fin_recipes.h"
class term_structure_class_cir : public term_structure_class {
private:
double r_;
double kappa_; // mean reversion parameter
double lambda_; // risk aversion
double theta_; // long run mean
double sigma_; // volatility
public:
~term_structure_class_cir();
term_structure_class_cir(const double\& r, const double\& k, const double\& l,
const double\& th, const double\& sigma);
virtual double discount_factor(const double\& T) const;
};

```

C++ Code 20.8: Class definition, Cox et al. (1985) model, header file
```

\#include "fin_recipes.h"
term_structure_class_cir:: ~term_structure_class_cir(){;};
term_structure_class_cir::term_structure_class_cir(const double\& r, const double\& k, const double\& l,
const double\& th, const double\& sigma) {
r_=r; kappa_=k; lambda_=l; theta_=th; sigma_=sigma;
};
double term_structure_class_cir::discount_factor(const double\& T) const{
return term_structure_discount_factor_cir(T,r_,kappa_,lambda_,theta_,sigma_);
};

```

C++ Code 20.9: Class definition, Cox et al. (1985) model
```

C++ program:
void test_term_structure_cir(){
cout << "Example calculations using the Cox Ingersoll Ross term structure model " << endl;
double r = 0.05; double kappa=0.01; double sigma=0.1; double theta=0.08; double lambda=0.0;
cout << " direct calculation, discount factor (t=1): "
<< term_structure_discount_factor_cir(1, r, kappa, lambda, theta, sigma) << endl;
cout << " using a class " << endl;
term_structure_class_cir cir(r,kappa,lambda,theta,sigma);
cout << " yield (t=1) = " << cir.yield(1) << endl;
cout << " discount factor (t=1) = " << cir.discount_factor(1) << endl;
cout << " forward (t1=1, t2=2) = " << cir.forward_rate(1,2) << endl;
};
Output from C++ program:
Example calculations using the Cox Ingersoll Ross term structure model
direct calculation, discount factor (t=1): 0.951166
using a class
yield (t=1) = 0.0500668
discount factor (t=1) = 0.951166
forward (t1=1, t2=2) = 0.0498756

```

\subsection*{20.5 Vasicek}
```

\#include <cmath>
using namespace std;
double term_structure_discount_factor_vasicek(const double\& time,
const double\& r
const double\& a
const double\& b
const double\& sigma){
double A,B;
double sigma_sqr = sigma*sigma;
double aa = a*a;
if (a==0.0){
B = time;
A = exp(sigma_sqr*pow(time,3))/6.0;
}
else {
B = (1.0 - exp(-a*time))/a;
A = exp(((B-time)*(aa*b-0.5*sigma_sqr))/aa -((sigma_sqr*B*B)/(4*a)));
};
double dfact = A* }\operatorname{exp}(-\mp@subsup{B}{}{*}r)
return dfact
}

```

C++ Code 20.10: Calculating a discount factor using the Vasicek functional form
```

\#include "fin_recipes.h"

```
class term_structure_class_vasicek : public term_structure_class \{
private:
    double \(\mathrm{r}_{-}\); double \(\mathrm{a}_{-} ;\)double \(\mathrm{b}_{-} ;\)double sigma_;
public:
    term_structure_class_vasicek(const double\& r, const double\& a, const double\& b, const double\& sigma)
    virtual double discount_factor(const double\& T ) const;
\};

C++ Code 20.11: Class definition, Vasicek (1977) model
```

\#include "fin_recipes.h"
term_structure_class_vasicek:: term_structure_class_vasicek(){;};
term_structure_class_vasicek::term_structure_class_vasicek(const double\& r, const double\& a,
const double\& b, const double\& sigma) {
r_=r; a_=a; b_=b; sigma_=sigma;
};
double term_structure_class_vasicek::discount_factor(const double\& T) const{
return term_structure_discount_factor_vasicek(T,r_,a_, b_,sigma_);
};

```

C++ Code 20.12: Class definition, Vasicek (1977) model
```

C++ program:
void test_term_structure_vasicek() {
cout << "Example term structure calculation using the Vasicek term structure model" << endl;
double r=0.05; double }a=-0.1\mathrm{ ; double }b=0.1\mathrm{ ; double sigma=0.1;
cout << " direct calculation, discount factor (t=1):"
<< term_structure_discount_factor_vasicek(1, r, a, b, sigma) << endl;
term_structure_class_vasicek vc(r,a,b,sigma);
cout << " using a term structure class" << endl;
cout << " yield (t=1) = " << vc.yield(1) << endl;
cout << " discount factor (t=1) = " << vc.discount_factor(1) << endl;
cout << " forward rate (t1=1, t2=2) = " << vc.forward_rate(1,2) << endl;
}

```

Output from C++ program:
Example term structure calculation using the Vasicek term structure model
direct calculation, discount factor ( \(\mathrm{t}=1\) ) : 0.955408
using a term structure class
yield ( \(\mathrm{t}=1\) ) \(=0.0456168\)
discount factor \((t=1)=0.955408\)
forward rate \((\mathrm{t} 1=1, \mathrm{t} 2=2)=0.0281476\)

The methods in this chapter I first studied in my dissertation at Carnegie Mellon University in 1992, which was published in Green and Ødegaard (1997).

\section*{Chapter 21}

\section*{Binomial Term Structure models}

Pricing bond options with the Black Scholes model, or its binomial approximation, as done in chapter 18, does not always get it right. For example, it ignores the fact that at the maturity of the bond, the bond volatility is zero. The bond volatility decreases as one gets closer to the bond maturity. This behaviour is not captured by the assumptions underlying the Black Scholes assumption. We therefore look at more complicated term structure models, the unifying theme of which is that they are built by building trees of the interest rate.

\subsection*{21.1 The Rendleman and Bartter model}

The Rendleman and Bartter approach to valuation of interest rate contingent claims (see Rendleman and Bartter (1979) and Rendleman and Bartter (1980)) is a particular simple one. Essentially, it is to apply the same binomial approach that is used to approximate options in the Black Scholes world, but the random variable is now the interest rate. This has implications for multiperiod discounting: Taking the present value is now a matter of choosing the correct sequence of spot rates, and it may be necessary to keep track of the whole "tree" of interest rates.
The general idea is to construct a tree as shown in figure 21.1.

Figure 21.1: Interest rate tree


The figure illustrates the building of an interest rate tree of one period spot rates by assuming that for any given period \(t\) the next period interest rate can only take on two values, \(r_{t+1}=u r_{t}\) or \(r_{t+1}=d r_{t}\), where \(u\) and \(d\) are constants. \(r_{0}\) is the initial spot rate.

Code 21.1 shows how one can construct such an interest rate tree.
Such a tree can then be used to price various fixed income securities. We will do this in a later version of this manuscript, but for now we just show a direct implementation of the original model. Code 21.2 implements the original algorithm for a call option on a (long maturity) zero coupon bond.

\subsection*{21.2 Readings}

General references include Sundaresan (2001).
Rendleman and Bartter (1979) and Rendleman and Bartter (1980) are the original references for building standard binomial interest rate trees.
```

\#include <vector>
\#include <cmath>
using namespace std;
vector< vector<double> >
build_interest_rate_tree_rendleman_bartter(const double\& r0
const double\& u,
const double\& d,
const int\& n){
vector< vector<double> > tree;
for (int i=1;i<= n;++i){
vector<double> r(i);
for (int j=0;j<i;++j){
r[j] = r0* pow (u,j)* pow (d,i-j-1);
};
tree.push_back(r);
};
return tree;
};

```

C++ Code 21.1: Building an interest rate tree
```

\#include <cmath>
\#include <algorithm>
\#include <vector>
using namespace std;
double bond_option_price_call_zero_american_rendleman_bartter(const double\& X,
const double\& S
const int\& no_steps) {
double delta_t = bond_maturity/no_steps;
double u=exp(S*sqrt(delta_t));
double d=1/u;
double p_up = (exp(M* delta_t)-d)/(u-d);
double p_down = 1.0-p_up;
vector<double> r(no_steps+1);
r[0]=interest*pow(d,no_steps);
double uu= u*u;
for (int i=1;i<=no_steps;++i){r[i]=r[i-1]*uu;};
vector<double> P(no_steps+1);
for (int i=0;i<=no_steps;++i){P[i] = maturity_payment; };
int no_call_steps=int(no_steps*option_maturity/bond_maturity);
for (int curr_step=no_steps;curr_step>no_call_steps;--curr_step) {
for (int i=0;i<curr_step;i++) {
r[i] = r[i]*u;
P[i] = exp(-r[i]*delta_t)*(p_down*P[i]+p_up*P[i+1]);
};
};
vector<double> C(no_call_steps+1);
for (int i=0;i<=no_call_steps;++i){ C[i]=max(0.0,P[i]-X); };
for (int curr_step=no_call_steps;curr_step>=0;--curr_step) {
for (int i=0;i<curr_step;i++) {
r[i] =r[i]*u;
P[i] = exp(-r[i]*delta_t)*(p_down*P[i]+p_up*P[i+1]);
C[i]=max(P[i]-X, exp(-r[i]*delta_t)*(p_up*C[i+1]+p_down*C[i]));
};
};
return C[0];
};

```
                                    const double\& option_maturity,
                                    const double\& M , // term structure paramters
                                    const double\& interest, // current short interest rate
                                    const double\& bond_maturity, // time to maturity for underlying bor
                                    const double\& maturity_payment,

C++ Code 21.2: RB binomial model for European call on zero coupon bond
```

C++ program:
void test_rendleman_bartter_zero_coupon_call() {
double }\textrm{K}=950\mathrm{ ; double }\textrm{S}=0.15\mathrm{ ; double }\textrm{M}=0.05\mathrm{ ; double interest=0.10;
double option_maturity=4; double bond_maturity=5; double bond_maturity_payment=1000;
int no_steps=100;
cout << " Rendleman Bartter price of option on zero coupon bond: ";
double c = bond_option_price_call_zero_american_rendleman_bartter(K, option_maturity, S, M,
interest, bond_maturity,
bond_maturity_payment, no_steps);
cout << " c = " << c << endl;
};
Output from C++ program:
Rendleman Bartter price of option on zero coupon bond: c = 0.00713661

```

\section*{Chapter 22}

\section*{Term Structure Derivatives}

\subsection*{22.1 Vasicek bond option pricing}

If the term structure model is Vasicek's model there is a solution for the price of an option on a zero coupon bond, due to Jamshidan (1989).
Under Vacisek's model the process for the short rate is assumed to follow.
\[
d r=a(b-r) d t+\sigma d Z
\]
where \(a, b\) and \(\sigma\) are constants. We have seen earlier how to calculate the discount factor in this case. We now want to consider an European Call option in this setting.
Let \(P(t, s)\) be the time \(t\) price of a zero coupon bond with a payment of \(\$ 1\) at time \(s\) (the discount factor). The price at time \(t\) of a European call option maturing at time \(T\) on on a discount bond maturing at time \(s\) is (See Jamshidan (1989) and Hull (1993))
\[
P(t, s) N(h)-X P(t, T) N\left(h-\sigma_{P}\right)
\]
where
\[
\begin{aligned}
& h=\frac{1}{\sigma_{P}} \ln \frac{P(t, s)}{P(t, T) X}+\frac{1}{2} \sigma_{P} \\
& \sigma_{P}=v(t, T) B(T, s) \\
& B(t, T)=\frac{1-e^{-a(T-t)}}{a} \\
& v(t, T)^{2}=\frac{\sigma^{2}\left(1-e^{-a(T-t)}\right)}{2 a}
\end{aligned}
\]

In the case of \(a=0\),
\[
\begin{aligned}
& v(t, T)=\sigma \sqrt{T-t} \\
& \sigma_{P}=\sigma(s-T) \sqrt{T-t}
\end{aligned}
\]
```

\#include "normdist.h"
\#include "fin_recipes.h"
\#include <cmath>
using namespace std;
double bond_option_price_call_zero_vasicek(const double\& X, // exercise price
const double\& r, // current interest rate
const double\& option_time_to_maturity,
const double\& bond_time_to_maturity,
const double\& a, // parameters
const double\& b,
const double\& sigma){
double T_t = option_time_to_maturity;
double s_t = bond_time_to_maturity;
double T_s = s_t-T_t;
double v_t_T;
double sigma_P;
if (a==0.0) {
v_t_T = sigma * sqrt (T_t) ;
sigma_P = sigma*T_s*sqrt(T_t);
}
else {
v_t_T = sqrt (sigma*sigma*(1-exp(-2*a*T_t))/(2*a));
double B_T_s = (1-\operatorname{exp}(-\mp@subsup{\textrm{a}}{}{*}\mp@subsup{T}{_}{\prime}\textrm{s}))/\textrm{a}
sigma_P = v_t_T*B_T_s;
};
double h = (1.0/sigma_P) * log (term_structure_discount_factor_vasicek(s_t,r,a,b,sigma)/
(term_structure_discount_factor_vasicek(T_t,r,a,b,sigma)*X))
+ sigma_P/2.0;
double c = term_structure_discount_factor_vasicek(s_t,r,a,b,sigma)*N(h)
-X*term_structure_discount_factor_vasicek(T_t,r,a,b,sigma)*N(h-sigma_P);
return c;
};

```

C++ Code 22.1: Bond option pricing using the Vasicek model
```

C++ program:
void test_vasicek_option_pricing(){
double a = 0.1; double b = 0.1; double sigma = 0.02; double r = 0.05; double X=0.9;
cout << " Vasicek call option price "
<< bond_option_price_call_zero_vasicek(X,r,1,5,a,b,sigma)}<<<< endl
};
Output from C++ program:
Vasicek call option price 0.000226833

```

\section*{Appendix A}

\section*{Normal Distribution approximations.}

We will in general not go into detail about more standard numerical problems not connected to finance, there are a number of well known sources for such, but we show the example of calculations involving the normal distribution.

\section*{A. 1 The normal distribution function}

The nurmal distribution function
\[
n(x)=e^{-\frac{x^{2}}{2}}
\]
is calculated as
```

\#include <cmath> // c library of math functions
using namespace std; // which is part of the standard namespace
// most C compilers define PI, but just in case it doesn't
\#ifndef PI
\#define PI 3.141592653589793238462643
\#endif
double n(const double\& z) { // normal distribution function
return (1.0/sqrt(2.0*PI))*exp(-0.5*z*z);
};

```

C++ Code A.1: The normal distribution function

\section*{A. 2 The cumulative normal distribution}

The solution of a large number of option pricing formulas are written in terms of the cumulative normal distribution. For a random variable \(x\) the cumulative probability is the probability that the outcome is lower than a given value \(z\). To calculate the probability that a normally distubuted random variable with mean 0 and unit variance is less than \(z, N(z)\), one have to evaluate the integral
\[
\operatorname{Prob}(x \leq z)=N(z)=\int_{-\infty}^{z} n(x) d x=\int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} d x
\]

There is no explicit closed form solution for calculation of this integral, but a large number of well known approximations exists. Abramowiz and Stegun (1964) is a good source for these approximations. The following is probably the most used such approximation, it being pretty accurate and relatively fast. The arguments to the function are assumed normalized to a ( 0,1 ) distribution.

\section*{A. 3 Multivariate normal}

The normal distribution is also defined for several random variables. We then characterise the vector of random variables
\[
\mathbf{X}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
\]
```

\#include <cmath> // math functions.
using namespace std;
double N(const double\& z) {
if (z > 6.0) { return 1.0; }; // this guards against overflow
if (z<-6.0) { return 0.0;};
double b1 = 0.31938153;
double b2 = -0.356563782;
double b3 = 1.781477937;
double b4 = -1.821255978;
double b5 = 1.330274429;
double p = 0.2316419;
double c2 = 0.3989423;
double a=fabs(z);
double t = 1.0/(1.0+a*p);
double b = c2* }\operatorname{exp}((-z\mp@subsup{)}{}{*}(z/2.0))
double n = ((((b5*t+b4)*t+b3)*t+b2)*t+b1)*t;
n = 1.0-b*n;
if (z<0.0) n = 1.0-n;
return n;
};

```

C++ Code A.2: The cumulative normal

A probability statement about this vector is a joint statement about all elements of the vector.

\section*{A. 4 Calculating cumulative bivariate normal probabilities}

The most used multivariate normal calculation is the bivariate case, where we let \(x\) and \(y\) be bivariate normally distributed, each with mean 0 and variance 1 , and assume the two variables have correlation of \(\rho\). By the definition of correlation \(\rho \in[-1,1]\). The cumulative probability distribution
\[
\begin{aligned}
P(x<a, y<b) & =N(a, b, \rho) \\
& =\int_{-\infty}^{a} \int_{-\infty}^{b} \frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2} \frac{x^{2}-2 \rho x y+y^{2}}{1-\rho^{2}}\right) d x d y
\end{aligned}
\]

There are several approximations to this integral. We pick one such, discussed in (Hull, 1993, Ch 10), shown in code A. 3
If one has more than two correlated variables, the calculation of cumulative probabilites is a nontrivial problem. One common method involves Monte Carlo estimation of the definite integral. We will consider this, but then it is necessary to first consider simulation of random normal variables.
\#include <cmath>// include the standard library mathematics functions
using namespace std; // which are in the standard namespace
double \(\mathrm{N}(\) const double\&); // define the univariate cumulative normal distribution as a separate function
\#ifndef PI
const double \(\mathrm{PI}=3.141592653589793238462643\);
\#endif
inline double \(f(\) const double \& \(x\), const double \& \(y\),
const double\& aprime, const double\& bprime,
const double\& rho) \{
double \(\mathrm{r}=\operatorname{aprime}^{*}\left(2^{*} \mathrm{x}-\right.\) aprime \()+\) bprime \({ }^{*}\left(2^{*} \mathrm{y}-\right.\) bprime \()+2^{*}\) rho* \((\mathrm{x}-\text { aprime })^{*}(\mathrm{y}-\) bprime \() ;\)
return \(\exp (r)\);
\};
inline double sgn(const double\& x\()\{/ /\) sign function
if ( \(x>=0.0\) ) return 1.0;
return -1.0;
\};
double \(\mathrm{N}(\) const double\& a , const double\& b , const double\& rho) \{
if ( \((\mathrm{a}<=0.0)\) \& \& \((\mathrm{b}<=0.0) \& \&(\mathrm{rho}<=0.0)\) ) \{ double aprime \(=\mathrm{a} / \mathrm{sqrt}\left(2.0^{*}(1.0-\right.\) rho* rho\()\) ); double bprime \(=\mathrm{b} / \operatorname{sqrt}(2.0 *(1.0-\) rho*rho \()\) ); double \(\mathrm{A}[4]=\{0.3253030,0.4211071,0.1334425,0.006374323\}\); double \(\mathrm{B}[4]=\{0.1337764,0.6243247,1.3425378,2.2626645\}\); double sum \(=0\);
for (int \(\mathrm{i}=0 ; \mathrm{i}<4 ; \mathrm{i}++\) ) \{
for (int \(j=0 ; j<4 ; j++\) ) \{ sum \(+=A[i]^{*} A[j] * f(B[i], B[j]\),aprime, bprime,rho);
\};
\};
sum \(=\operatorname{sum}^{*}(\operatorname{sqrt}(1.0-\) rho \(*\) rho \() / \mathrm{PI}) ;\)
return sum
\}
else if \(\left(\mathrm{a}^{*} \mathrm{~b} *\right.\) rho \(\left.<=0.0\right)\) \{
if \(((a<=0.0) \& \&(b>=0.0) \& \&(r h o>=0.0))\{\)
return \(\mathrm{N}(\mathrm{a})-\mathrm{N}(\mathrm{a},-\mathrm{b},-\mathrm{rho})\);
\}
else if \(((a>=0.0) \& \&(b<=0.0) \& \&(r h o>=0.0))\) \{
return \(\mathrm{N}(\mathrm{b})-\mathrm{N}(-\mathrm{a}, \mathrm{b},-\mathrm{rho})\);
\}
else if \(((a>=0.0) \& \&(b>=0.0) \& \&(r h o<=0.0))\{\)
return \(\mathrm{N}(\mathrm{a})+\mathrm{N}(\mathrm{b})-1.0+\mathrm{N}(-\mathrm{a},-\mathrm{b}\), rho \()\);

\section*{\};}
\}
else if \(\left(\mathrm{a}^{*} \mathrm{~b} *\right.\) rho \(\left.>=0.0\right)\{\)
double denum \(=\operatorname{sqrt}\left(\mathrm{a}^{*} \mathrm{a}-2 *\right.\) rho \(\left.^{*} \mathrm{a}^{*} \mathrm{~b}+\mathrm{b}^{*} \mathrm{~b}\right)\);
double rho \(1=\left(\left(\text { rho }^{*} \mathrm{a}-\mathrm{b}\right)^{*} \operatorname{sgn}(\mathrm{a})\right) /\) denum;
double rho \(2=\left(\left(\text { rho }^{*} \mathrm{~b}-\mathrm{a}\right)^{*} \operatorname{sgn}(\mathrm{~b})\right) /\) denum;
double delta \(=\left(1.0-\operatorname{sgn}(a)^{*} \operatorname{sgn}(b)\right) / 4.0\);
return \(\mathrm{N}(\mathrm{a}, 0.0\), rho1 \()+\mathrm{N}(\mathrm{b}, 0.0, \mathrm{rho} 2)-\) delta;
\};
return -99.9; // should never get here, alternatively throw exception
\};

C++ Code A.3: Approximation to the cumulative bivariate normal
```

C++ program:
\#include "normdist.h"
void test_cumulative_normal() {
cout << " N(0) = " << N(0) << endl;
cout <<"N(0,0,0)=" << N (0,0,0) <<< endl;
};
Output from C++ program:
$\mathrm{N}(0)=0.5$
$N(0,0,0)=0.25$

```

\section*{A. 5 Simulating random normal numbers}

Generation of random numbers is a large topic and is treated at length in such sources as Knuth (1997). The generated numbers can never be truly random, only "pseudo"-random, they will be generated according to some reproducible algorithm and after a (large) number of random number generations the sequence will start repeating itself. The number of iterations before replication starts is a measure of the quality of a random number generator. For anybody requiring high-quality random number generators the rand() function provided by the standard C++ library should be avoided, but for not getting into involved discussion of random number generations we use this function as a basis for the generation of uniformly distributed numbers in the interval \([0,1)\), as shown in code A.4.
```

\#include <cstdlib>
double random_uniform_0_1(void){
return double(rand())/double(RAND_MAX); // this uses the C library random number generator.
};

```

C++ Code A.4: Pseudorandom numbers from an uniform \([0,1)\) distribution

\section*{Exercise 23.}

Replace the random_uniform function here by an alternative of higher quality, by looking into what numerical libraries is available on your computing platform, or by downloading a high quality random number generator from such places as mathlib or statlib.
These uniformly distributed distributed random variates are used as a basis for the polar method for normal densities discussed in Knuth (1997) and inplemented as shown in code A. 5
```

\#include <cmath>
\#include <cstdlib>
//using namespace std;
double random_uniform_0_1(void);
double random_normal(void){
double U1, U2, V1, V2;
double S=2;
while (S>=1) {
U1 = random_uniform_0_1();
U2 = random_uniform_0_1();
V1 = 2.0*U1-1.0;
V2 = 2.0*U2-1.0;
S = pow(V1,2)+\operatorname{pow}(\textrm{V}2,2);
};
double X1=V1*sqrt((-2.0* log(S))/S);
return X1;
};

```

C++ Code A.5: Pseudorandom numbers from a normal \((0,1)\) distribution

\section*{A. 6 Cumulative probabilities for general multivariate distributions}

When moving beyond the bivariate case calculation of probability integrals become more of an exercise in general numerical integration. A typical tool is Monte Carlo integration, but that is not the only possibility.

\section*{A. 7 References}

Tong (1990) discusses the multivariate normal distribution, and is a good reference.
```

C++ program:
\#include "normdist.h"
void test_random_normal(){
cout << " 5 random uniform numbers between 0 and 1: ";
for (int i=0;i<5;++i){ cout << " " << random_uniform_0_1(); }; cout << endl;
cout << " 5 random normal(0,1) numbers: ";
for (int i=0;i<5;++i){ cout << " " << random_normal(); }; cout << endl;
};
Output from C++ program:
5 random uniform numbers between 0 and 1: 0.8401880 .3943830 .7830990 .798440 .911647
5 random normal (0,1) numbers: -1.072240 .9259462 .702021 .369180 .0187313

```

\section*{Appendix B}

\section*{C++ concepts}

This chapter contains a listing of various \(\mathrm{C} / \mathrm{C}++\) concepts and some notes on each of them.
bool Boolean variable, taking on the two values true and false. For historical reasons one can also use the values zero and one for false and true.
class (C++ keyword).
const (qualifyer to variable in \(\mathrm{C}++\) function call).
double (basic type). A floating point number with high accuracy.
\(\exp (\mathrm{x})\left(\mathrm{C}\right.\) function). Defined in \(<\mathrm{cmath}>\). Returns the natural exponent \(e\) to the given power \(x, e^{x}\).

\section*{fabs}
float (basic type). A floating point number with limited accuracy.
```

for Loop

```
header file
if
Indexation (in vectors and matrices). To access element number i in an array A, use A[i-1]. Well known trap for people coming to C from other languages. Present in C for historical efficiency reasons. Arrays in C were implemented using pointers. Indexing was done by finding the first element of the array, and then adding pointers to find the indexed element. The first element is of course found by adding nothing to the first elment, hence the first element was indexed by zero.
include
inline (qualifyer to \(\mathrm{C}++\) function name). Hint to the optimizer that this function is most efficiently implemented by inlining it, or putting the full code of the function into each instance of its calling. Has the side effect of making the function local to the file in which it is defined.
int (basic type). An integer with a limited number of significant digits.
\(\log (\mathrm{x})\) (C function). Defined in \(<\mathrm{cmath}>\). Calculates the natural logarithm \(\ln (x)\) of its argument.
long (basic type). An integer that can contain a large number.
namespace
return
standard namespace
string
using
vector (C ++ container class). Defined in \(<\) vector \(>\)
while

\section*{Appendix C}

\section*{Summarizing routine names}

In many of the algorithms use is made of other routines. To simplify the matter all routines are summarised in one header file, fin_recipes.h. This appendix shows this file.
// file: fin_recipes.h
// author: Bernt Arne Oedegaard
// defines all routines in the financial numerical recipes "book"
\#ifndef _FIN_RECIPES_H_
\#define _FIN_RECIPES_H_
\#include <vector>
using namespace std;

// discrete coumpounding

// discrete, annual compounding
double cash_flow_pv_discrete ( const vector \(<\) double \(>\&\) cflow_times, const vector \(<\) double \(>\&\) cflow_amounts, const double\& r);
double cash_flow_irr_discrete(const vector \(<\) double \(>\&\) cflow_times, const vector \(<\) double \(>\&\) cflow_amounts);
bool cash_flow_unique_irr(const vector \(<\) double \(>\&\) cflow_times, const vector \(<\) double \(>\&\) cflow_amounts);
double bonds_price_discrete(const vector \(<\) double \(>\&\) cashflow_times, const vector \(<\) double \(>\&\) cashflows, const double\& r);
double bonds_yield_to_maturity_discrete(const vector \(<\) double \(>\&\) times, const vector \(<\) double \(>\&\) amounts, const double\& bondprice);
double bonds_duration_discrete(const vector \(<\) double \(>\&\) times, const vector \(<\) double \(>\&\) cashflows, const double\& r );
double bonds_duration_macaulay_discrete(const vector \(<\) double \(>\&\) cashflow_times, const vector \(<\) double \(>\&\) cashflows, const double\& bond_price);
double bonds_duration_modified_discrete (const vector \(<\) double \(>\&\) times, const vector \(<\) double \(>\&\) amounts, const double\& bond_price);
double bonds_convexity_discrete(const vector<double \(>\&\) cflow_times, const vector<double \(>\&\) cflow_amounts, const double\& r);
///////////////////////////////////
// continous compounding.
double cash_flow_pv(const vector<double \(>\&\) cflow_times, const vector<double \(>\&\) cflow_amounts,const double\& r); double cash_flow_irr(const vector<double \(>\&\) cflow_times, const vector \(<\) double \(>\&\) cflow_amounts);
double bonds_price (const vector \(<\) double \(>\&\) cashflow_times, const vector \(<\) double \(>\&\) cashflows, const double\& r);
double bonds_price(const vector \(<\) double \(>\&\) coupon_times, const vector \(<\) double \(>\&\) coupon_amounts,
const vector \(<\) double \(>\&\) principal_times, const vector \(<\) double \(>\&\) principal_amounts,
const double\& r);
double bonds_duration(const vector \(<\) double \(>\&\) cashflow_times, const vector \(<\) double \(>\&\) cashflows, const double\& r);
double bonds_yield_to_maturity(const vector \(<\) double \(>\&\) cashflow_times, const vector \(<\) double \(>\&\) cashflow_amounts, const double\& bondprice);
double bonds_duration_macaulay(const vector \(<\) double \(>\) \& cashflow_times, const vector \(<\) double \(>\) \& cashflows, const double\& bond_price);
double bonds_convexity(const vector<double \(>\&\) cashflow_times, const vector \(<\) double \(>\&\) cashflow_amounts, const double\& y );
/// term structure basics
double term_structure_yield_from_discount_factor(const double\& dfact, const double\& t );
double term_structure_discount_factor_from_yield(const double\& r, const double\& t);
double term_structure_forward_rate_from_discount_factors(const double\& d_t1, const double\& d_t2,
const double\& time);
double term_structure_forward_rate_from_yields(const double\& r_t1, const double\& r_t2, const double\& t 1 , const double\& t 2 );
double term_structure_yield_linearly_interpolated(const double\& time,
const vector<double \(>\&\) obs_times,
const vector \(<\) double \(>\&\) obs_yields);
```

// a term structure class
class term_structure_class {
public:
virtual ~term_structure_class();
virtual double yield(const double\& t) const;
virtual double discount_factor(const double\& t) const;
virtual double forward_rate(const double\& t1, const double\& t2) const;
};
class term_structure_class_flat : public term_structure_class {
private:
double R_; // interest rate
public:
term_structure_class_flat(const double\& r);
virtual ~term_structure_class_flat();
virtual double yield(const double\& t) const;
// virtual double discount_factor(const double\& t) const;
// virtual double term_structure_class_flat::forward_rate(const double\&8 t1, const double\& t2) const;
void set_int_rate(const double\& r);
};
class term_structure_class_interpolated : public term_structure_class {
private:
vector<double> times_; // use to keep a list of yields
vector<double> yields_;
void clear();
public:
term_structure_class_interpolated();
term_structure_class_interpolated(const vector < double >\& times, const vector <double >\& yields);
virtual ~term_structure_class_interpolated();
term_structure_class_interpolated(const term_structure_class_interpolated\&);
term_structure_class_interpolated operator = (const term_structure_class_interpolated\&);
int no_observations() const { return times_.size(); };
virtual double yield(const double\& T) const;
void set_interpolated_observations(vector <double >\& times, vector <double >\& yields);
};
// using the term structure classes
double bonds_price(const vector<double>\& cashflow_times,
const vector<double>\& cashflows,
const term_structure_class\& d);
double bonds_duration(const vector<double >\& cashflow_times,
const vector<double>\& cashflow_amounts,
const term_structure_class\& d);
double bonds_convexity(const vector <double>\& cashflow_times,
const vector<double>\& cashflow_amounts,
const term_structure_class\& d);

```
//// Futures pricing
double futures_price(const double\& S, const double\& r, const double\& time_to_maturity);
/// Binomial option pricing
    // one periode binomial
double option_price_call_european_binomial_single_period( const double\& S, const double\& K, const double\& r,
    const double\& \(u\), const double\& d);
// multiple periode binomial
double option_price_call_european_binomial_multi_period_given_ud( const double\& S, const double\& X, const double\& r,
```

// multiple periode binomial
vector< vector<double> > binomial_tree(const double\& S0, const double\& u,const double\& d,
const int\& no_steps);

```
/// Black Scholes formula //////////////////////////////////////////
double option_price_call_black_scholes(const double\& S, const double\& K, const double\& r,
    const double\& sigma, const double\& time) ;
double option_price_put_black_scholes (const double\& S, const double\& K, const double\& r,
    const double\& sigma, const double\& time) ;
double
option_price_implied_volatility_call_black_scholes_newton( const double\& S, const double\& K,
                                    const double\& \(r\), const double\& time,
    const double\& option_price);
double option_price_implied_volatility_call_black_scholes_bisections( const double\& S, const double\& K,
                                    const double\& r, const double\& time,
                                    const double\& option_price);
double option_price_delta_call_black_scholes(const double\& S, const double\& K, const double\& r,
    const double\& sigma, const double\& time);
double option_price_delta_put_black_scholes (const double\& S, const double\& K, const double\& r,
    const double\& sigma, const double\& time);
void option_price_partials_call_black_scholes(const double\& S, const double\& K, const double\& r,
                        const double\& sigma, const double\& time,
                        double\& Delta, double\& Gamma, double\& Theta,
                            double\& Vega, double\& Rho);
void option_price_partials_put_black_scholes(const double\& S, const double\& K, const double\& r,
    const double\& sigma, const double\& time,
    double\& Delta, double\& Gamma, double\& Theta,
    double\& Vega, double\& Rho);
/// warrant price
double warrant_price_adjusted_black_scholes(const double\& S, const double\& K ,
                                    const double\& \(r\), const double\& sigma,
                                    const double\& time,
                                    const double\& no_warrants_outstanding,
                                    const double\& no_shares_outstanding);
double warrant_price_adjusted_black_scholes(const double\& S, const double\& K, const double\& \(r\), const double\& \(q\), const double\& sigma, const double\& time, const double\& no_warrants_outstanding, const double\& no_shares_outstanding);
/// Extensions of the Black Scholes model /////////////
double option_price_european_call_payout(const double\& S , const double\& K , const double\& r , const double\& b , const double\& sigma, const double\& time);
double option_price_european_put_payout (const double\& S, const double\& K, const double\& r,
const double\& b , const double\& sigma, const double\& time);
double option_price_european_call_dividends(const double\& S, const double\& K, const double\& r,
const double\& sigma, const double\& time,
const vector \(<\) double \(>\&\) dividend_times,
const vector \(<\) double \(>\) \& dividend_amounts );
double option_price_european_put_dividends( const double\& \(S\), const double\& \(K\), const double\& \(r\), const double\& sigma,const double\& time, const vector \(<\) double \(>\&\) dividend_times, const vector \(<\) double \(>\) \& dividend_amounts);
double option_price_american_call_one_dividend(const double\& \(S\), const double\& \(K\), const double\& \(r\), const double\& sigma,
const double\& tau, const double\& D1, const double\& tau1);
double futures_option_price_call_european_black(const double\& F , const double\& K , const double\& r , const double\& sigma, const double\& time);
double futures_option_price_put_european_black(const double\& F , const double\& K , const double \& r , const double\& sigma, const double\& time);
double currency_option_price_call_european(const double\& \(S\), const double\& \(K\), const double\& \(r\), const double\& r_f, const double\& sigma, const double\& time);
double currency_option_price_put_european(const double\& \(S\), const double\& \(K\), const double\& \(r\), const double\& r_f, const double\& sigma, const double\& time);
double option_price_american_perpetual_call(const double\& \(S\), const double\& \(K\), const double\& r, const double\& \(q\), const double\& sigma);
double option_price_american_perpetual_put(const double\& S, const double\& K, const double\& r, const double\& \(q\), const double\& sigma);
// binomial option approximation ///////////////
double option_price_call_european_binomial(const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& t , const int\& steps);
double option_price_put_european_binomial (const double\& \(S\), const double\& \(K\), const double\& \(r\), const double\& sigma, const double\& \(t\), const int\& steps); double option_price_call_american_binomial(const double\& S , const double\& K , const double\& r , const double\& sigma, const double\& t , const int\& steps); double option_price_put_american_binomial (const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& \(t\), const int\& steps);
double option_price_call_american_binomial(const double\& S, const double\& K, const double\& \(r\), const double\& \(y\), const double\& sigma, const double\& \(t\), const int \& steps);
double option_price_put_american_binomial (const double\& S, const double\& K , const double\& r , const double\& y , const double\& sigma, const double\& t , const int\& steps);
double option_price_call_american_discrete_dividends_binomial( const double\& S, const double\& K, const double\& \(r\),
const double\& sigma, const double\& t , const int\& steps,
const vector \(<\) double \(>\&\) dividend_times, const vector \(<\) double \(>\) \& dividend_amounts);
double option_price_put_american_discrete_dividends_binomial(const double\& S, const double\& K, const double\& \(r\),
const double\& sigma, const double\& t , const int\& steps,
const vector \(<\) double \(>\) \& dividend_times, const vector \(<\) double \(>\&\) dividend_amounts);
double option_price_call_american_proportional_dividends_binomial(const double\& S, const double\& K,
const double\& r , const double\& sigma, const double\& time, const int\& no_steps,
const vector \(<\) double \(>\) \& dividend_times,
const vector \(<\) double \(>\&\) dividend_yields);
double option_price_put_american_proportional_dividends_binomial( const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_steps, const vector \(<\) double \(>\) \& dividend_times, const vector \(<\) double \(>\&\) dividend_yields);
double option_price_delta_american_call_binomial(const double\& S, const double\& \(K\), const double\& \(r\), const double\& sigma, const double\& t , const int\& no_steps);
double option_price_delta_american_put_binomial(const double\& \(S\), const double\& \(K\), const double\& r,
const double\& sigma, const double\& t , const int\& no_steps);
void option_price_partials_american_call_binomial(const double\& S, const double\& \(K\), const double\& \(r\), const double\& sigma, const double\& time, const int\& no_steps, double\& delta, double\& gamma, double\& theta, double\& vega, double\& rho);
void option_price_partials_american_put_binomial(const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_steps, double\& delta, double\& gamma, double\& theta, double\& vega, double\& rho);
double futures_option_price_call_american_binomial(const double\& F, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_steps);
double futures_option_price_put_american_binomial( const double\& F, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_steps);
double currency_option_price_call_american_binomial( const double\& S, const double\& \(K\), const double\& r, const double\& r_f,
const double\& sigma, const double\& t , const int\& n );
double currency_option_price_put_american_binomial( const double\& S, const double\& K, const double\& r, const double\& r_f, const double\& sigma, const double\& t , const int\& n );

\section*{//////////////////// finite differences //////////////////}
double option_price_call_american_finite_diff_explicit( const double\& \(S\), const double\& \(K\), const double\& \(r\), const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
double option_price_put_american_finite_diff_explicit( const double\& S, const double\& \(K\), const double\& r, const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
double option_price_call_european_finite_diff_explicit( const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
double option_price_put_european_finite_diff_explicit( const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
double option_price_call_american_finite_diff_implicit( const double\& S, const double\& \(K\), const double\& r, const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
double option_price_put_american_finite_diff_implicit( const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
double option_price_call_european_finite_diff_implicit( const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
double option_price_put_european_finite_diff_implicit( const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, const int\& no_S_steps, const int\& no_t_steps);
\(/ / / / / / / / / / / / / / / / / / / / / / /\) simulated option prices \(/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /\)
// Payoff only function of terminal price
double option_price_call_european_simulated(const double\& S, const double\& K ,
const double\& \(r\), const double\& sigma,
const double\& time_to_maturity, const int\& no_sims);
double option_price_put_european_simulated(const double\& S , const double\& K ,
const double\& \(r\), const double\& sigma,
const double\& time_to_maturity, const int\& no_sims);
double option_price_delta_call_european_simulated(const double\& S, const double\& K,
const double\& \(r\), const double\& sigma,
const double\& time_to_maturity, const int\& no_sims);
double option_price_delta_put_european_simulated(const double\& S, const double\& K, const double\& r, const double\& sigma,
const double\& time_to_maturity, const int\& no_sims);
double simulate_lognormal_random_variable(const double\& \(S\), const double\& r, const double\& sigma, const double\& time);
double
derivative_price_simulate_european_option_generic( const double\& S, const double\& K ,
const double\& r , const double\& sigma, const double\& time, double payoff(const double\& price, const double\& K), const int\& no_sims);

\section*{double}
derivative_price_simulate_european_option_generic_with_control_variate(const double\& S, const double\& K, const double\& \(r\), const double\& sigma, const double\& time,
double payoff(const double\& price, const double\& K),
const int\& no_sims);
double
derivative_price_simulate_european_option_generic_with_antithetic_variate(const double\& S, const double\& K const double\& r, const double\& sigma, const double\& time, double payoff(const double\&price, const double\& K),
const int\& no_sims);

\section*{/////////////////////////////}
// payoffs of various options, to be used as function arguments in above simulations
double payoff_call(const double\& price, const double\& K);
double payoff_put (const double\& price, const double\& K);
double payoff_cash_or_nothing_call(const double\& price, const double\& K);
double payoff_asset_or_nothing_call(const double\& price, const double\& K);
////////// approximated option prices //////////////////////
double option_price_american_call_approximated_baw(const double\& S, const double\& K, const double\& \(r\), const double\& \(b\), const double\& sigma, const double\& time);
double option_price_american_put_approximated_baw(const double\& S, const double\& K , const double\& \(r\), const double\& \(b\), const double\& sigma, const double\& time);
///////////// path dependent and other exotic options //////////////////////////////
double option_price_call_bermudan_binomial(const double\& \(S\), const double\& \(X\), const double\& r, const double\& q , const double\& sigma, const double\& time, const vector \(<\) double \(>\&\) potential_exercise_times, const int\& steps);
double option_price_put_bermudan_binomial( const double\& S, const double\& X, const double\& r, const double\& q , const double\& sigma, const double\& time, const vector \(<\) double \(>\&\) potential_exercise_times, const int\& steps);
double option_price_european_lookback_call(const double\& S, const double\& Smin, const double\& r, const double\& \(q\), const double\& sigma, const double\& time);
double option_price_european_lookback_put(const double\& S, const double\& Smin, const double\& r, const double\& \(q\), const double\& sigma, const double\& time);

\section*{double}
option_price_asian_geometric_average_price_call(const double\& S, const double\& K , const double\& r , const double\& \(q\), const double\& sigma, const double\& time);
vector<double> simulate_lognormally_distributed_sequence(const double\& S, const double\& r,
const double\& sigma, const double\& time, const int\& no_steps);

\section*{double}
derivative_price_simulate_european_option_generic( const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, double payoff(const vector \(<\) double \(>\&\) price, const double\& K), const int\& no_steps, const int\& no_sims);
double
derivative_price_simulate_european_option_generic_with_control_variate(const double\& S, const double\& K, const double\& r, const double\& sigma, const double\& time, double payoff(const vector \(<\) double \(>\) \& price, const double\& K), const int\& nosteps, const int\& nosims);

\section*{/////////////////////////////}
// payoffs of various options, to be used as function arguments in above simulations
double payoff_arithmetric_average_call(const vector<double>\& prices, const double\& K);
double payoff_geometric_average_call(const vector \(<\) double \(>\&\) prices, const double \& K);
double payoff_lookback_call(const vector \(<\) double \(>\&\) prices, const double\& unused_variable);
double payoff_lookback_put(const vector \(<\) double \(>\&\) prices, const double\& unused_variable);
/////////////////// alternative stochastic processes ////////////////
double option_price_call_merton_jump_diffusion( const double\& S, const double\& \(K\), const double\& \(r\), const double\& sigma, const double\& time_to_maturity, const double\& lambda, const double\& kappa, const double\& delta);
// fixed income derivatives, GBM assumption on bond price
double bond_option_price_call_zero_black_scholes(const double\& B, const double\& K, const double\& r, const double\& sigma, const double\& time);
double bond_option_price_put_zero_black_scholes(const double\& B, const double\& K, const double\& r, const double\& sigma, const double\& time);
double bond_option_price_call_coupon_bond_black_scholes(const double\& B, const double\& K, const double\& r, const double\& sigma, const double\& time, const vector<double> coupon_times, const vector \(<\) double \(>\) coupon_amounts);
double bond_option_price_put_coupon_bond_black_scholes(const double\& B, const double\& K, const double\& r, const double\& sigma, const double\& time, const vector<double> coupon_times, const vector \(<\) double \(>\) coupon_amounts);
double bond_option_price_call_american_binomial( const double\& B, const double\& \(K\), const double\& \(r\), const double\& sigma, const double\& \(t\), const int\& steps);
double bond_option_price_put_american_binomial( const double\& B, const double\& \(K\), const double\& \(r\), const double\& sigma, const double\& t , const int\& steps);

```

// term structure models
/// formulas for calculation

```
double term_structure_yield_nelson_siegel(const double \& t,
const double\& beta0, const double\& beta1, const double\& beta2, const double\& lambda );
double term_structure_discount_factor_cubic_spline(const double\& t,
const double\& b1,
const double\& c 1 ,
const double\& d1,
const vector \(<\) double \(>\& f\),
const vector \(<\) double \(>\&\) knots);
double term_structure_discount_factor_cir(const double\& t , const double\& r ,
const double\& kappa,
const double\& lambda,
const double\& theta,
const double\& sigma);
double term_structure_discount_factor_vasicek(const double\& time,
const double\& r,
const double\& a, const double\& b , const double\& sigma);
/// defining classes wrapping the above term structure approximations
class term_structure_class_nelson_siegel : public term_structure_class \{
private:
double beta \(0_{-}\), beta \(1_{-}\), beta \(2_{-}\), lambda_;
public:
virtual ~term_structure_class_nelson_siegel();
term_structure_class_nelson_siegel(const double\& beta0, const double\& beta1,
const double\& beta2, const double\& lambda);
virtual double yield(const double\& t) const;
\};
class term_structure_class_cubic_spline : public term_structure_class \{ private:
double \(b_{-}\); double \(c_{-}\); double \(d_{-}\); vector \(<\)double \(>f_{-} ;\)vector \(<\)double \(>\)knots_; public:
term_structure_class_cubic_spline(const double\& b, const double\& c, const double\& d,
const vector \(<\) double \(>\& \mathrm{f}\), const vector \(<\) double \(>\) \& knots);
virtual ~term_structure_class_cubic_spline();
virtual double discount_factor(const double\& t) const;
\};
class term_structure_class_cir : public term_structure_class \{
private:
double \(r_{-}\); double kappa_; double lambda_; double theta_; double sigma_; public:
term_structure_class_cir(const double\& r, const double\& \(k\), const double\& 1 ,
const double\& th,const double\& sigma);
virtual ~term_structure_class_cir();
virtual double discount_factor(const double \& t) const;
\(\} ;\)
class term_structure_class_vasicek : public term_structure_class \{ private:
double \(r_{-}\); double \(a_{-} ;\)double \(b_{-} ;\)double sigma_;
public:
term_structure_class_vasicek(const double \& r, const double \& a, const double \& b, const double \& sigma);
virtual ~term_structure_class_vasicek();
virtual double discount_factor(const double\& T ) const;
\};
/////////////////
/// binomial term structure models
/// bond option, rendlemann bartter (binomial)

\section*{double}
bond_option_price_call_zero_american_rendleman_bartter(const double\& K, const double\& option_maturity,
const double\& \(S\), const double\& \(M\),
const double\& interest,
const double\& bond_maturity, const double\& maturity_payment, const int\& no_steps);

\section*{//////////////////////////////////}
// term structure derivatives, analytical solutions
double bond_option_price_call_zero_vasicek(const double\& X, const double\& r, const double\& option_time_to_maturity, const double\& bond_time_to_maturity, const double\& \(a\), const double\& \(b\), const double\& sigma);
double bond_option_price_put_zero_vasicek(const double\& X, const double\& r, const double\& option_time_to_maturity, const double\& bond_time_to_maturity, const double\& a , const double\& b , const double\& sigma);
\#endif

\section*{Appendix D}

\section*{Installation}

The routines discussed in the book are available for download.

\section*{D. 1 Source availability}

The algorithms are available from my home page as a ZIP file containing the source code. These have been tested with the latest version of the GNU C++ compiler. As the algorithms in places uses code from the Standard Template Library, other compilers may not be able to compile all the files directly. If your compiler complains about missing header files you may want to check if the STL header files have different names on your system. The algorithm files will track the new ANSI standard for C ++ libraries as it is being settled on. If the compiler is more than a couple of years old, it will not have STL. Alternatively, the GNU compiler gcc is available for free on the internet, for most current operating systems.

\section*{List of C++ Codes}
1.1 A complete program7
1.2 Defining a date class ..... 9
1.3 Basic operations for the date class ..... 10
1.4 Comparison operators for the date class ..... 11
1.5 Iterative operators for the date class ..... 12
3.1 Present value with discrete compounding ..... 17
3.2 Estimation of the internal rate of return ..... 19
3.3 Test for uniqueness of IRR ..... 21
3.4 Bond price calculation with discrete, annual compounding. ..... 22
3.5 Bond yield calculation with discrete, annual compounding ..... 23
3.6 Bond duration using discrete, annual compounding and a flat term structure ..... 24
3.7 Calculating the Macaulay duration of a bond ..... 24
3.8 Modified duration ..... 25
3.9 Bond convexity with a flat term structure and annual compounding ..... 26
3.10 Present value calculation with continously compounded interest ..... 29
3.11 Bond price calculation with continously compounded interest and a flat term structure ..... 31
3.12 Bond duration calculation with continously compounded interest and a flat term structure ..... 31
3.13 Calculating the Macaulay duration of a bond with continously compounded interest and a flat term structure ..... 31
3.14 Bond convexity calculation with continously compounded interest and a flat term structure ..... 31
4.1 Term structure transformations ..... 35
4.2 Header file describing the term_structure base class ..... 36
4.3 Default code for transformations between discount factors, spot rates and forward rates in a term structure class ..... 37
4.4 Header file for term structure class using a flat term structure ..... 38
4.5 Implementing term structure class using a flat term structure ..... 38
4.6 Interpolated term structure from spot rates ..... 40
4.7 Header file describing a term structure class using linear interpolation between spot rates ..... 42
4.8 Term structure class using linear interpolation between spot rates ..... 43
4.9 Pricing a bond with a term structure class ..... 45
4.10 Calculating a bonds duration with a term structure class ..... 46
4.11 Calculating a bonds convexity with a term structure class ..... 46
5.1 Futures price ..... 47
6.1 Binomial European, one period ..... 49
6.2 Building a binomial tree ..... 52
6.3 Binomial multiperiod pricing of European call option ..... 53
7.1 Price of European call option using the Black Scholes formula ..... 55
7.1Price of European call option using the Black Scholes formula55
7.2 Calculating the delta of the Black Scholes call option price ..... 58
7.3 Calculating the partial derivatives of a Black Scholes call option ..... 59
7.4 Calculation of implied volatility of Black Scholes using bisections ..... 61
7.5 Calculation of implied volatility of Black Scholes using Newton-Raphson ..... 62
8.1 Adjusted Black Scholes value for a Warrant ..... 65
9.1 Option price, continous payout from underlying ..... 67
9.2 European option price, dividend paying stock ..... 68
9.3 Option price, Roll-Geske-Whaley call formula for dividend paying stock ..... 71
9.4 Price of European Call option on Futures contract ..... 73
9.5 European Futures Call option on currency ..... 75
9.6 Price for an american perpetual call option ..... 77
10.1 Option price for binomial european ..... 81
10.2 Binomial option price american opstion ..... 82
10.3 Delta ..... 83
10.4 Hedge parameters ..... 84
10.5 Binomial option price with continous payout ..... 86
10.6 Binomial option price of stock option where stock pays proportional dividends ..... 88
10.7 Binomial option price of stock option where stock pays discrete dividends ..... 89
10.8 Option on futures ..... 91
10.9 Binomial Currency Option ..... 92
11.1 Explicit finite differences calculation of european put option ..... 95
11.2 Explicit finite differences calculation of american put option ..... 96
12.1 Simulating a lognormally distributed random variable ..... 99
12.2 European Call option priced by simulation ..... 99
12.3 Estimate Delta of European Call option priced by Monte Carlo ..... 100
12.4 Payoff call and put options ..... 102
12.5 Generic simulation pricing ..... 102
12.6 Generic with control variate ..... 104
12.7 Generic with antithetic variates ..... 105
12.8 Payoff binary options ..... 107
13.1 Barone Adesi quadratic approximation to the price of a call option ..... 111
14.1 Binomial approximation to Bermudan put option ..... 114
14.2 Analytical price of an Asian geometric average price call ..... 116
14.3 Price of lookback call option ..... 117
14.4 Simulating a sequence of lognormally distributed variables ..... 119
14.5 Generic routine for pricing European options which ..... 120
14.6 Payoff function for Asian call option ..... 120
14.7 Payoff function for lookback option ..... 121
14.8 Control Variate ..... 122
15.1 Mertons jump diffusion formula ..... 125
16.1 Calculation of price of European put using implicit finite differences ..... 127
16.2 Calculation of price of American put using implicit finite differences ..... 128
17.1 Mean variance calculations ..... 131
17.2 Calculating the unconstrained frontier portfolio given an expected return ..... 133
18.1 Black scholes price for European call option on zero coupon bond ..... 138
18.2 Black scholes price for European call option on coupon bond ..... 139
18.3 Binomial approximation to american bond option price ..... 140
20.1 Calculation of the Nelson and Siegel (1987) term structure model ..... 145
20.2 Header file defining a term structure class wrapper for the Nelson Siegel approximation ..... 145
20.3 Defining a term structure class wrapper for the Nelson Siegel approximation ..... 145
20.4 Approximating a discount function using a cubic spline ..... 147
20.5 Term structure class wrapping the cubic spline approximation ..... 147
20.6 Term structure class wrapping the cubic spline approximation ..... 148
20.7 Calculation of the discount factor using the Cox et al. (1985) model ..... 149
20.8 Class definition, Cox et al. (1985) model, header file ..... 150
20.9 Class definition, Cox et al. (1985) model ..... 150
20.10Calculating a discount factor using the Vasicek functional form ..... 151
20.11Class definition, Vasicek (1977) model ..... 151
20.12Class definition, Vasicek (1977) model ..... 151
21.1 Building an interest rate tree ..... 155
21.2 RB binomial model for European call on zero coupon bond ..... 156
22.1 Bond option pricing using the Vasicek model ..... 158
A. 1 The normal distribution function ..... 159
A. 2 The cumulative normal ..... 160
A. 3 Approximation to the cumulative bivariate normal ..... 161
A. 4 Pseudorandom numbers from an uniform \([0,1)\) distribution ..... 163
A. 5 Pseudorandom numbers from a normal \((0,1)\) distribution ..... 163

List of Matlab Codes

\section*{Appendix E}

\section*{Acknowledgements.}

After this paper was put up on the net, I've had quite a few emails about them. Some of them has pointed out bugs and other inaccuracies.
Among the ones I want to say thanks to for making improving suggestions and pointing out bugs are
Ariel Almedal
Steve Bellantoni
Jean-Paul Beveraggi
Lars Gregori
Daniel Herlemont
Lorenzo Isella
Jens Larsson
Garrick Lau
Steven Leadbeater
Michael L Locher
Lotti Luca, Milano, Italy
Tuan Nguyen
Michael R Wayne

\section*{Index}
r, 58
\(\rho, 58\)
\(\theta, 58\)
antithetic variates, 104
antithetic variates, 104
asset or nothing call, 107
Barone-Adesi and Whaley, 109
binary option, 107
binomial option price, 48, 79
binomial term structure models, 154
binomial_tree, 52
Black
futures option, 73
Black Scholes option pricing formula, 54
bond, 21
duration, 23
price, 22
yield to maturity, 22
bond convexity, 26
bond option
basic binomial, 140
Black Scholes, 138
Vasicek, 157
bond_option_price_call_zero_american_rendleman_bartter_04, 122 156, 173
bond_option_price_call_zero_vasicek, 158
bond_option_price_put_american_binomial, 140 double ( \(\overline{\mathrm{C}}++\) type \(), 4\)
bond_option_price_put_coupon_bond_black_sch@leqation, 23 139
bond_option_price_put_zero_black_scholes, 138
bonds_convexity, 31, 46
bonds_convexity_discrete, 26
bonds_duration, 31, 46
bonds_duration_discrete, 24
bonds_duration_macaulay, 31
bonds_duration_macaulay_discrete, 24
bonds_duration_modified_discrete, 25
bonds_price, 31, 45, 167
bonds_price_discrete, 22
bonds_yield_to_maturity_discrete, 23
bool (C++ type), 4
build_interest_rate_tree_rendleman_bartter, 155
call option, 48
cash flow, 16
cash or nothing call, 107
cash_flow_irr_discrete, 19
cash_flow_pv, 29
cash_flow_pv_discrete, 17, 166
cash_flow_unique_irr, 21
class, 8
cmath, 5
control variates, 103
convexity
of bond, 26
Cox Ingersoll Ross term structure model, 149
currency
option, 75
currency option
American, 92
European, 75
currency_option_price_call_american_binomial, 92
currency_option_price_call_european, 75
date::date, 10
date::day, 10
date::month, 10
date::valid, 10
date::year, 10
delta, 58
binomial, 83
Black Scholes, 58
derivative_price_simulate_european_option_generic, 102, 120
derivative_price_simulate_european_option_generic_with_antit 105
derivative_price_simulate_european_option_generic_with_contr
discount factor, 16
discount_factor, 151, 173

Macaulay, 24
modified, 25
early exercise premium, 109
\(\exp ()\) (C++ statement), 5
explicit finite differences, 94
f, 161
finite differences, 94,126
explicit, 94
for (C++ statement), 6
function prototypes (C++ concept), 102
futures
option, 73
futures_option_price_call_american_binomial, 91
futures_option_price_call_european_black, 73
futures_price, 47
gamma, 58
geometric Brownian motion, 57
hedging parameters
Black Scholes, 58
if, 11
implied volatility calculation, 61
include (C++ statement), 5
int (C++ type), 4
internal rate of return, 18
irr, 18
iteration operator
definition of (C++ concept), 12
Jump Diffusion, 124
long (C++ type), 4
lookback option, 117
main, 7
Merton
Jump Diffusion, 124
modified duration, 25
Monte Carlo
antithetic variates, 104
monte carlo
control variates, 103
mv_calculate_mean, 131
mv_calculate_portfolio_given_mean_unconstrained

\section*{133}
mv _calculate_st_dev, 131
mv_calculate_variance, 131
N, 160, 161
n, 159
next_date, 12
no_observations, 42, 167
normal distribution
approximations, 159
simulation, 163
option
call, 48
currency, 75
futures, 73
lookback, 117
put, 48
Option price
Black Scholes, 54
option price
binomial, 79
simulated, 98
option_price_american_call_approximated_baw, 111
option_price_american_call_one_dividend, 71
option_price_american_perpetual_call, 77
option_price_asian_geometric_average_price_call 116
option_price_call_american_binomial, 82, 86
option_price_call_american_discrete_dividends_binomial_-uniform_0_1, 163 89
option_price_call_american_proportional_dividends_binomial, 88
option_price_call_black_scholes, 55
option_price_call_european_binomial, 81
option_price_call_european_-binomial_multi_period_given_ud, 53
option_price_call_european_binomial_single_period, 49
option_price_call_european_simulated, 99
option_price_call_merton_jump_diffusion, 125
option_price_delta__american_call_binomial, 83
option_price_delta_call_black_scholes, 58
option_price_delta_call_european_simulated, 100
option_price_european_call_dividends, 68
option_price_european_call_payout, 67
option_price_european_lookback_call, 117
option_price_implied_-volatility _call_black_scholes_bisections, 61
option_price_implied_volatility_call_black_scholes_newton, 62
option_price_partials_american_call_binomial, 84
option_price_partials_call_black_scholes, 59
option_price_put_american_finite_diff_explicit, 96
option_price_put_american_finite_-diff_implicit, 128
option_price_put_bermudan_binomial, 114
option_price_put_european_-inite_diff_explicit, 95
option_price_put_european_finite_diff_implicit, 127
partial derivatives
binomial, 83
Black Scholes, 58
partials
Black Scholes, 58
payoff_arithmetric_average_call, 120
payoff_asset_or_nothing_call, 107
payoff_call, 102
payoff_cash_or_nothing_call, 107
payoff_geometric_average_call, 120
payoff_lookback_call, 121
payoff_lookback_put, 121
payoff_put, 102
pow() (C++ statement), 5
power, 7
present value, 16
previous_date, 12
pricing
relative, 48
put option, 48
quadratic approximation, 109
random_normal, 163
relative pricing, 48

Rendleman and Bartter model, 154
return
internal rate of, 18
rho, 58
sgn, 161
Sharpe Ratio, 137
simulate_lognormal_random_variable, 99
simulate_lognormally_distributed_sequence, 119
simulation, 98
string (C++ type), 4
term structure derivatives, 157
term structure model
Cox Ingersoll Ross, 149
term structure models
binomial, 154
term_structure_class::discount_factor, 37
term_structure_class::forward_rate, 37
term_structure_class::yield, 37
term_structure_class_cir, 150, 173
term_structure_class_cir::discount_factor, 150
term_structure_class_cir::term_structure_class_ 150
term_structure_class_cubic_spline, 147, 148, 173
 148 test_option_price_call_black_scholes, 56
term_structure_class_cubic_spline::discount_factortest_option_price_perpetual_american_call, 77 148
term_structure_class_flat::yield, 38
term_structure_class_interpolated::clear, 43
term_structure_class_interpolated::set_interpolate 43
term_structure_class_interpolated::term_structure 43
term_structure_class_interpolated::yield, 43
term_structure_class_nelson_siegel, 145


145
term_structure_class_nelson_siegel::yield, 145
term_structure_class_vasicek::discount_factor, 151
term structure class vasicek \(\cdot \cdot\) term structure clast _term_structure_cir, 150
term_structure_class_vasicek::term_structure_classestāsicerme_structure_class_bond_calculations, 46 151
term_structure_discount_factor_cir, 149
term_structure_discount_factor_cubic_spline, 147
term_-structure_discount_factor_from_yield, 35
term_structure_discount_factor_vasicek, 151
term_structure_forward_rate_from_discount_fact 35
term_structure_forward_rate_from_yields, 35
term_structure_yield_from_discount_factor, 35
term_structure_yield_linearly_interpolated, 40
term_structure_yield_nelson_siegel, 145
test_analytical_geometric_average, 116
test_baw_approximation_call, 112
test_-bermudan_option, \(1 \overline{1} 5\)
test_simulation_pricing, 99
test_simulation_pricing_delta, 101
est term structure cir 150
test_term_structure_class_flat, 39
test_term_structure_class_interpolated, 44
test_term_structure_cubic_spline, 148
test_term_structure_nelson_siegel, 146
test_term_structure_vasicek, 152
prest_termstru_interpolated, 41
test_termstru_transforms, 35
test_vasicek_option_pricing, 158
test_warrant_price_adjusted_black_scholes, 66
theta, 58
time
value of, 16
underlying security, 54
test_bin_eur_call_ud, 53
test_binomial_approximations_currency_options, 92
test_binomial_approximations_futures_options, 91
test_binomial_approximations_option_price_dividends, 90
test_binomial_approximations_option_price_partials, 85
test_binomial_approximations_option_pricing, 82
test_black_scholes_implied_volatility, 63
test_-black__scholes_partials_call, 60
test_black_scholes_with_dividends, 68
test_bond_option_gbm_pricing, 141
test_bonds_duration_discrete, 28
test_bonds_price_discrete, 23
test_credit_risk, 143
test_cumulative_normal, 162
test_currency_option_european_call, 75
test_exotics_lookback, 118
test_explicit_finite_differences, 97
test_futures_option_price_black, 73
test_futures_price, 47
cifest_implicit_finite_differences, 129
test_mean_variance_calculations, 131
est mean variance_portfolio_calculation, 134
test_present_value, 20
test_random_normal, 164
test_rendleman_bartter_zero_coupon_call, 156

test_simulate _general_european, 123
testassininterionateblnary_options, 108
test_simulation_bs_case_using_generic_routine, 103
test simulation_bs_case_using_generic_routine_improving_effic
valid, 9
Vasicek, 151
vega, 58
volatility
implied, 61
warrant_price_adjusted_black_scholes, 65
yield, \(36,38,42,167\)

\section*{Bibliography}

Milton Abramowiz and Irene A Stegun. Handbook of Mathematical Functions. National Bureau of Standards, 1964.

Giovanni Barone-Adesi and Robert E Whaley. Efficient analytic approximation of American option values. Journal of Finance, 42(2):301-20, June 1987.

Fisher Black. The pricing of commodity contracts. Journal of Financial Economics, 3:167-79, 1976.

Fisher Black and Myron S Scholes. The pricing of options and corporate liabilities. Journal of Political Economy, 7:637-54, 1973.

Robert R Bliss. Fitting term structures to bond prices. Working paper, University of Chicago, January 1989.

Zvi Bodie, Alex Kane, and Alan J Marcus. Investments. McGraw Hill, 6 edition, 2005.

Peter L Bossaerts and Bernt Arne Ødegaard. Lectures on Corporate Finance. World Scientific Press, Singapore, 2001.

Phelim P Boyle. Options: A Monte Carlo approach. Journal of Financial Economics, 4:323-38, 1977.

Richard A Brealey and Stewart C Myers. Principles of Corporate Finance. McGraw-Hill, seventh edition, 2002.

Michael Brennan and Eduardo Schwartz. Finite difference methods and jump processes arising in the pricing of contingent claims: A synthesis. Journal of Financial and Quantitative Analysis, 13:461-74, 1978.

John Cox and Mark Rubinstein. Options markets. PrenticeHall, 1985.

John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing: A simplified approach. Journal of Financial Economics, 7:229-263, 1979.

John C Cox, Jonathan E Ingersoll, and Stephen A Ross. A theory of the term structure of interest rates. Econometrica, 53:385-408, 1985.

Robert Geske. The valuation of compound options. Journal of Financial Economics, 7:63-81, March 1979.

M Barry Goldman, Howard B Sosin, and Mary Ann Gatto. Path-dependent options: Buy at the low, sell at the high. Journal of Finance, 34, December 1979.

Richard C Green and Bernt Arne Ødegaard. Are there tax effects in the relative pricing of U.S. Government bonds? Journal of Finance, 52:609-633, June 1997.

Robert A Haugen. Modern Investment Theory. PrenticeHall, fifth edition, 2001.

Chi-fu Huang and Robert H Litzenberger. Foundations for financial economics. North-Holland, 1988.

John Hull. Options, Futures and other Derivatives. Prentice-Hall, sixth edition, 2006.

John Hull. Options, Futures and other Derivative Securities. Prentice-Hall, second edition, 1993.

F Jamshidan. An exact bond option pricing formula. Journal of Finance, 44:205-9, March 1989.

A Kemna and A Vorst. A pricing method for options based on average asset values. Journal of Banking and Finance, 14:113-29, March 1990.

Donald E Knuth. The Art of Computer Programming Volume 2, Seminumerical Algotithms. Addison-Wesley, third edition, 1997.

Stanley B Lippman and Jos'ee Lajoie. \(C++\) primer. Addison-Wesley, third edition, 1998.

Robert H Litzenberger and Jaques Rolfo. An international study of tax effects on government bonds. Journal of Finance, 39:1-22, 1984.

Harry Markowitz. Portfolio selection. Journal of Finance, 7:77-91, 1952.

J Houston McCulloch. Measuring the term structure of interest rates. Journal of Business, 44:19-31, 1971.

J Houston McCulloch. The tax adjusted yield curve. Journal of Finance, 30:811-829, 1975.

Robert McDonald and Daniel Siegel. The value of waiting to invest. Quarterly Journal of Economics, pages 707-727, November 1986.

Robert L McDonald. Derivatives Markets. Pearson, second edition, 2006.

Robert C Merton. An analytic derivation of the efficient portfolio frontier. Journal of Financial and Quantitative Analysis, 7:1851-72, September 1972.

Robert C Merton. The theory of rational option pricing. Bell Journal, 4:141-183, 1973.
Franco Modigliani and Merton M Miller. The cost of capital, corporation finance and the theory of investment. American Economic Review, 48:261-97, 1958.

Charles R Nelson and Andrew F Siegel. Parsimonious modelling of yield curves. Journal of Business, 60(4):473-89, 1987.

Carl J Norstrom. A sufficient conditions for a unique nonnegative internal rate of return. Journal of Financial and Quantitative Analysis, 7(3):1835-39, 1972.

William Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. Numerical Recipes in C. Cambridge University Press, second edition, 1992.

Richard J Rendleman and Brit J Bartter. Two-state option pricing. Journal of Finance, 34(5):1093-1110, December 1979.

Richard J Rendleman and Brit J Bartter. The pricing of options on debt securities. Journal of Financial and Quantitative Analysis, 15(1):11-24, March 1980.

Richard Roll. A critique of the asset pricing theory's testsPart I: On past and potential testability of the theory. Journal of Financial Economics, 4:129-176, 1977a.

Richard Roll. An analytical formula for unprotected American call options on stocks with known dividends. Journal of Financial Economics, 5:251-58, 1977b.

Stephen A Ross, Randolph Westerfield, and Jeffrey F Jaffe. Corporate Finance. McGras-Hill, seventh edition, 2005.

Mark Rubinstein. The valuation of uncertain income streams and the valuation of options. Bell Journal, 7:407-25, 1976.

Mark Rubinstein. Exotic options. University of California, Berkeley, working paper, 1993.
Robert J. Shiller. The term structure of interest rates. In B M Friedman and F H Hahn, editors, Handbook of Monetary Economics, volume 2, chapter 13, pages 627-722. Elsevier, 1990.

Bjarne Stroustrup. The \(C++\) Programming language. Addison-Wesley, third edition, 1997.

Suresh Sundaresan. Fixed Income Markets and their Derivatives. South-Western, 2 edition, 2001.

Y L Tong. The Multivariate Normal Distribution. Springer, 1990.

O Vasicek. An equilibrium characterization of the term structure. Journal of Financial Economics, 5:177-88, 1977.

Robert E Whaley. On the valuation of American call options on stocks with known dividends. Journal of Financial Economics, 9:207-1, 1981

Paul Wilmott, Jeff Dewynne, and Sam Howison. Option Pricing, Mathematical models and computation. Oxford Financial Press, 1994. ISBN 0952208202.```


[^0]:    ${ }^{1}$ This is termed a flat term structure. We will in the next chapter relax this simplifying assumption.

[^1]:    ${ }^{2}$ By imaginary here we mean that we move away from the real line to the set of complex numbers.

[^2]:    ${ }^{1}$ For further discussion of the Newton-Raphson formula and bracketing, a good source is chapter 9 of Press et al. (1992)

[^3]:    ${ }^{1}$ Such options would be like the classical April fools present, a perpetual zero coupon bond...

